Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research study describes the role part of the brain plays in memory

17.07.2007
A research with experimental rats carried out by the Institute of Neuroscience of the UAB describes the brain region connected to how our declarative memory functions. According to this experiment, part of the prefrontal cortex plays a key role in the social transmission of food preference. This research has helped learn more about how this type of memory functions. In the future, this information could be useful to find new treatment for diseases that affect the memory, such as Alzheimer's disease.

Declarative memory is described as a flexible, conscience and associative type of memory (i.e., it is based on relations between different stimuli). It differs from other types of memories that allow us to recall effective or emotionally-charged data, or carry out processes such as riding a bicycle or playing an instrument. Declarative memory allows us to remember things such as specific moments of our lives, names of people, what we ate for lunch, the capitals of the world, etc. The malfunctioning of this type of memory is one of the most common symptoms found in those suffering from Alzheimer's disease.

A useful model from which to learn about how declarative memory functions is the social transmission of food preference. In other species, this task is connected to the survival of the species and plays a crucial role in their evolution. In this research, the social transmission of food preference was carried out with experimental rats.

When one rodent sniffs another rodent's snout right after the second one has eaten, the first one will later choose to eat the same exact food. Animals learn to remember what their congeners eat and, in that way, lower the risk of eating new foods that could be harmful to them. In addition, they must later use this information acquired during a brief episode of social interaction in very different circumstances. Therefore, they need the flexible expression of memory, which is one of the main traits of declarative memory.

This task depends on learning how to associate smells, a function that is commanded by a specific region of the brain, the nucleus basalis magnocellularis (NBM), which produces acetylcholine (a neurotransmitter that "transfers information" from one neurone to another through synapses). This chemical substance is essential in making the memory work correctly. The nucleus basalis magnocellularis equivalent in humans is the nucleus basalis Meynert. Precisely this is one of the regions of the brain that shown signs of degeneration among those who suffer from Alzheimer's (and who are often treated with drugs that help to produce acetylcholine).

The acetylcholine produced by the nucleus basalis is transferred to other regions of the brain, where it is "recognised" by receptor molecules. The research team examined the possibility of one part of the brain, the prelimbic prefrontal cortex, being linked to the social transmission of food preference. To do so, they applied a chemical compound to the experimental rats that neutralised the acetylcholine receptors (muscarinic cholinergic receptor) of this region. By blocking the receptor, the effect of the neurotransmitter was also neutralised and the changes in the animals' behaviour were observed.

The results demonstrated that the social transmission of food preference was clearly affected after neutralising the acetylcholine receptors. Researchers also verified that the effects were not due to other aspects that could alter the experiment, such as lack of olfactory perception, motivation or social interaction. The results therefore suggest that the prelimbic prefrontal cortex, via the use of acetylcholine, regulates cognitive operations (e.g. flexibility in behaviour, attention or strategic planning) that could be needed to correctly express social transmission of food preference, and therefore necessary for our declarative memory.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>