Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amoebae control cheating by keeping it in the family

09.07.2007
Study shows social amoeba's association with kin controls single-celled cheaters

No one likes a cheater, even a single-celled one.

New research from Rice University shows how cooperative single-celled amoebae rely on family ties to keep cheaters from undermining the health of their colonies. The research appeared in the Proceedings of the National Academy of Sciences in May.

"It's very unusual to get a complete story in biology -- one that marries careful field work with painstaking work in the laboratory -- and that's what we have here," said research co-author Joan Strassmann, chair of Rice's Department of Ecology and Evolutionary Biology.

Rice's research involved the common soil microbe Dictyostelium discoideum. These amoebae can be loners in times of plenty, but when food is scarce they work together, forming colonies to ensure their survival. About one fifth of the individuals in a colony form a tall, thin stalk. The rest climb the stalk and clump together into a bulbous fruiting body that can be carried away to better environs by the wind or on the legs of passing insects.

This simple social system poses an evolutionary conundrum for biologists; the members of the stalk give themselves up altruistically to support the colony, so what's to keep more selfish strains of D. discoideum from cheating the system, avoiding the stalk and out-reproducing their altruistic neighbors"

Strassmann and Rice evolutionary biologist David Queller have previously investigated how Dictyostelium colonies control cheating. For example, a study on D. discoideum showed that one gene governing cooperative behavior was also tied to reproduction. In another study, mutants that were genetically predisposed to avoid altruistic service in the stalk were also excluded from reproducing. A third study demonstrated that Dictyostelium purpureum preferentially associated with its own kin -- another mechanism that ensures altruism isn't taken advantage of by cheaters.

The current study combined graduate student Owen Gilbert's careful field and lab work on natural D. discoideum clones with exacting studies of genetically engineered mutant strains conducted by former postdoctoral researcher Kevin Foster and postdoctoral researcher Natasha Mehdiabadi.

"This work required investigators skilled in both field biology and molecular biology, an all-too-rare combination," Strassmann said.

Gilbert collected 144 D. discoideum fruiting bodies -- some of which were the first ever reported in the wild -- from 2003 to 2005 at the University of Virginia's Mountain Lake Biological Station in the Appalachian Mountains of southwestern Virginia. Back in the lab, Gilbert broke open the fruiting bodies and deciphered the genetic makeup of more than 3,000 individual spores. Though he found genetic differences between fruiting bodies, the spores within particular fruiting bodies were highly related.

Foster and Mehdiabadi worked with a mutant form of D. discoideum called "cheater A" that was missing a single gene known to play roles in both group productivity and reproduction. On their own, cheater A mutants produced few or no spores, but in mixed colonies they could thrive by cheating and avoiding service in the stalk. Foster and Mehdiabadi found cheater A spread readily within low-related colonies, and exacted a high toll by reducing the colonies' ability to reproduce. In colonies with highly related cells, the cheater's individual advantages were outweighed by the overall health of the group, so the cheaters couldn't gain a foothold.

"The combination of these two studies confirms something that's been long predicted by kin selection theory -- a mutant that cheats when relatedness is low cannot and has not spread in the wild because of natural relatedness," Queller said.

Gilbert said, "Our results answer the big question of why altruism persists. It persists because high relatedness prevents the spread of socially destructive mutants."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>