Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nepalese researchers identify cost-effective treatment for drug-resistant typhoid

28.06.2007
New research carried out by researchers in Nepal has shown that a new and affordable drug, Gatifloxacin, may be more effective at treating typhoid fever than the drug currently recommended by the World Health Organisation. The study, funded by the Wellcome Trust, has implications for the treatment of typhoid particularly in areas where drug resistance is a major problem. The results are published today in the open access journal PLoS ONE.

Enteric fever, of which typhoid fever is the most common form, is a major disease affecting the developing world, where sanitary conditions remain poor. The best global estimates are of at least 22 million cases of typhoid fever each year with 200,000 deaths. Drug resistance is becoming a major problem and treatment is becoming increasingly difficult, leading to patients taking longer to recover, suffering more complications and continuing to spread the disease to their family and to their community.

Clinical investigators based at Patan Hospital Lalitpur in Kathmandu, Nepal, and the Oxford University Clinical Research Unit in Vietnam have completed a study to see if they can improve the treatment for patients with typhoid fever. Kathmandu has been termed the typhoid fever capital of the world as a result of this disease remaining so common.

“Typhoid fever is a major problem in Nepal and in the developing world and drug-resistant strains are making it even more difficult to tackle," says Dr Buddha Basnyat, senior investigator on the study. "The currently recommended treatment, Cefixime, is relatively expensive and must be administered for a longer duration than is ideal. Clearly there is an urgent need for a treatment that is cost-effective and easy to administer."

The results of the study show that a cost-effective new fluoroquinolone drug, Gatifloxacin, may be a better treatment for enteric fever than Cefixime, which is currently recommended by the World Health Organisation. In addition, Salmonella enterica Typhi and Salmonella enterica serovar Paratyhpi A, the two most common bacteria to cause enteric fever, do not show resistance to Gatifloxacin, unlike for other fluoroquinolones.

"We have shown that Gatifloxacin may be better than an established drug used by many doctors around the world," says Dr Basnyat. "There is currently no resistance to the drug, and at just over US$1 dollar for a seven day treatment course is relatively inexpensive."

"This is an important study with major implications for treating disease widespread in the developing world," says Professor Jeremy Farrar from the Oxford University Clinical Research Unit in Vietnam. "It also shows the major contribution that clinical investigators in Nepal, with the experience and knowledge gained from access to thousands of patients, can help make to improving treatment for our patients and to global health.”

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>