Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds estrogen therapy gives aging brain cells a boost

26.06.2007
Cyclical, long-term estrogen injections protected brain cells from age-related deterioration, according to a new study conducted at Mount Sinai School of Medicine. The study suggests that age is a factor in estrogen treatment and sheds light on the intricate relationship between mind, age, and hormones. The study will be published in the online edition of Proceedings of the National Academy of Sciences during the week of June 25.

In a multi-center study comparing older rhesus monkeys with younger female monkeys, researchers found that estrogen significantly improved cognitive function in older animals but not in young monkeys. The study was led by Jiandong Hao, MD, PhD, Assistant Professor of Neuroscience, and senior co-author John H. Morrison, PhD, Dean of Basic Sciences and the Graduate School of Biological Sciences, and the W.T.C. Johnson Professor of Geriatrics and Adult Development (Neurobiology of Aging). Peter Rapp, PhD, Interim Chair of the Department of Neuroscience and Associate Professor of Neuroscience, and Geriatrics and Adult Development, led the behavioral phase of the study. Partrick Hof, MD, the Irving and Dorothy Regenstreif Research Professor Neuroscience, and William Janssen, a researcher in Neurobiology of Aging, also contributed to the research.

Working with colleagues from the University of Toronto and the University of California-Davis, Drs. Morrison, Rapp, and Hao compared the outcomes of four groups of female monkeys that were ovarectomized, which induced menopause: old monkeys that received estrogen, old monkeys that did not receive estrogen, young monkeys that received estrogen, and young monkeys that did not receive estrogen. The treated animals received pure estradiol injections every 21 days while being tested on a series of cognitive tasks over the course of more than two years.

Cognitive performance tests showed the older treated animals performed almost as well as the younger animals, whereas older untreated animals displayed dramatic cognitive decline. Surprisingly, the younger animals performed equally well with or without estrogen treatments. The aged animals had their ovaries removed around the time of perimenopause—before the onset of full menopause—and began treatment within months of ovariectomy.

Microscopic studies conducted after the cognitive testing was completed revealed that in the prefrontal cortex—a region of the brain associated with cognitive tasks that Dr. Rapp used to test the monkeys—the older estrogen-treated animals showed a greater density of synaptic spines—tentacle-like structures that link brain cells to one another and aid in brain cell communication—while the older untreated animals showed no such neuronal growth. These spines are critically important for learning and memory.

The findings indicate that the debate on the potential benefits of postmenopausal hormone therapy is not yet over, says Dr. Morrison. “There’s been a great deal of confusion as to whether estrogen helps or harms post-menopausal women, and our findings tell us is that there is a very critical window of opportunity in which estrogen therapy may be helpful.”

Dr. Morrison notes that this critical window may be around the time of perimenopause, in which cyclical estrogen treatments as used in this study may be particularly effective in protecting the brain from age-related decline.

“We found that this increase in synaptic spines in the prefrontal cortex in the older estrogen-treated monkeys appears to have prevented age-related cognitive decline,” Dr. Morrison explains. “Importantly, the increase was most pronounced among the small spines that are highly plastic and particularly important for learning and memory. Young monkeys retain a high number of these small spines even without estrogen, which explains their ability to perform well on the cognitive tasks. Estrogen levels decline in old age, so the brain may need a certain amount of circulating estrogen to remain supple. Timing may be everything.”

“The increase we observed in small, thin spines suggests that estrogen allows for greater neuroplasticity, says Dr. Morrison. “Synaptic spines are lost during aging, and interestingly, it is the dynamic nature of the small-headed spines that are critical to the formation of new memories.”

The younger animals retain neural plasticity in the absence of estrogen, Dr. Morrison explains, “but what’s happening with the older animals is this double hit of both age and estrogen decline. These particular brain cells are not resilient enough anymore to endure this kind of double hit.”

Rhesus monkeys undergo menstrual cycles and a menopause that closely mimics those of humans. Although it is well known that estrogen affects brain function, what is unclear is what form of estrogen works best, when estrogen should be given, and how much is needed to be effective. It is possible, the researchers note, that administering the same cyclical estradiol treatments to very old monkeys would result in less benefit.

“It’s possible a middle-aged brain reacts differently to estrogen than a young brain, and that a very old brain might not react to estrogen at all,” Dr. Morrison explains, “so this window of opportunity may be fairly narrow—we just don’t know yet. If the brain is too old, then age-related decline may be difficult to reverse. However, our study suggests that if we jump before it’s too late, we may possibly prevent memory loss.” What is also unclear, Dr. Morrison adds, is at what point the natural course of aging trumps the effects of any estrogen treatment.

Drs. Rapp and Morrison plan to extend their research through similar behavioral and microscopic studies in monkeys that have not been ovarectomized, so that the aging process is more natural and not acutely induced.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>