Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut check: Tracking the ecosystem within us

26.06.2007
HHMI study profiles microbes that colonize newborns' GI tracts

For more than 100 years, scientists have known that humans carry a rich ecosystem within their intestines. An astonishing number and variety of microbes, including as many as 400 species of bacteria, help humans digest food, mitigate disease, regulate fat storage, and even promote the formation of blood vessels. By applying sophisticated genetic analysis to samples of a year’s worth baby poop, Howard Hughes Medical Institute researchers have now developed a detailed picture of how these bacteria come and go in the intestinal tract during a child’s first year of life.

The study, published June 25, 2007, in the journal Public Library of Science (PLoS) Biology, was led by Howard Hughes Medical Institute (HHMI) investigator Patrick O. Brown at the Stanford University School of Medicine.

"I don't know what a human would look like without a colonized gut," said Chana Palmer, the lead author of the new study and a former graduate student in Brown's lab. "The microbiota are important. They help you extract more from your food; they're important for the immune system; and they help protect us from being colonized by [microbes] that are going to do us harm."

Before birth, the human intestinal tract is sterile, but babies immediately begin to acquire the microbial denizens of the gut from their environment -- the birth canal, mothers' breast, and even the touch of a sibling or parent. Within days, a thriving microbial community is established and by adulthood, the human body typically has as many as ten times more microbial cells than human cells. This is primarily due to the large number of microorganisms that have taken up residence in the intestine.

The new study tracked the evolution of the microbial ecosystems in 14 healthy, full-term human infants that were breast fed. Most of the bacteria that live within humans do not thrive in an oxygen-rich environment, and thus are difficult or impossible to grow in culture in the lab. So the researchers turned to DNA microarray technology. That technology, developed by Brown in the 1990s, allows researchers to simultaneously measure the presence or activity of thousands of genes. The team used microarrays to profile the mixture of bacterial DNA in an average of 26 stool samples per infant over the course of the first year of life, beginning with the first stool after birth.

For a handful of these samples, they compared the results that they had obtained using their microarray with the laborious ‘gold standard’ approach of using genetic libraries of bacteria to get a snapshot of the microbial ecosystem in an infant at a given point in time and found that their new method performed very well.

The results, said Palmer, were striking: the group found that the intestinal microbial communities varied widely from baby to baby – both in terms of which microbes were present and in how that composition changed over time. That finding, she said, is important because it helps broaden the definition of healthy microbial colonization in a baby.

Another intriguing observation, Palmer noted, was a tendency for sudden shifts in the composition of the infants' intestinal microbial communities over time as different species of bacteria ebbed and flowed.

"We don't have a good explanation for why one big group of bacteria would replace another. And it's not that the number of bacteria dropped," Palmer explained. "The size of the population was relatively stable."

Over time, however, the composition of the intestinal microbial communities converged toward a more generic profile characteristic of the adult intestine.

The new study, the authors noted, might bring some clarity to the factors that shape the composition of the microbial communities in the infant intestinal tract. For example, there are conflicting studies about Bifidobacteria, a group of bacterial species reputed to have beneficial effects. Some studies have shown that it is more common in the intestinal tracts of breast-fed infants, but Palmer and Brown’s work documented a paucity of those bacteria, although all were breast fed.

The finding that most babies in the study did not acquire significant numbers of Bifidobacteria until several months after birth was a surprise, Palmer said: "That's definitely a contentious area. A lot of studies say they are a major constituent of gut flora beginning shortly after birth."

Putting the study on a firmer footing was the fortuitous inclusion of a pair of fraternal twins, Palmer noted. Although the researchers observed variability within their study, the composition and dynamics of the evolving microbial ecosystems were strikingly similar in the twins. This, Palmer said, provided evidence that genetic and environmental factors shape those ecosystems in reproducible ways. "These data are so rich it is hard to benchmark," she explained. "It's nice to have that check with the twins."

An important general conclusion, said Palmer, is that by the end of the first year of life the intestinal microbial ecosystems assumed a generally similar profile.

"It almost doesn’t matter where you start off because we all end up in the same place. There are some bacteria that are really well suited for your gut and they're going to win no matter what."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>