Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study finds lymphoma drug effective over long term

05.06.2007
86 percent of patients treated with Bexxar survived after 8 years of follow-up

Eight years after being treated with a new drug for non-Hodgkin's lymphoma, 86 percent of patients were still alive and half had not had a relapse of their disease, according to researchers from the University of Michigan Comprehensive Cancer Center.

The patients had follicular lymphoma, a type of cancer that is not considered to be curable using traditional treatments. Even if patients initially respond to treatment, the disease almost always comes back and becomes more difficult to treat.

The study followed 76 patients with follicular non-Hodgkin's lymphoma, a cancer of the lymph system, who received the radioimmunotherapy drug Bexxar as their first treatment for the disease. Ninety-five percent of the patients saw their tumors shrink from the treatment and three-quarters of patients went into complete remission. Patients were followed for a median of eight years, and nearly two-thirds have remained in complete remission eight years after treatment.

"For years we have known radioimmunotherapy such as Bexxar is one of the most effective treatments for patients with relapsed follicular lymphoma. These data show Bexxar is particularly effective when used as a frontline treatment," says Mark Kaminski, M.D., professor of internal medicine at the U-M Medical School. Kaminski will present these results June 4 at the American Society of Clinical Oncology annual meeting in Chicago.

"These results compare quite favorably with those achieved with state-of-the-art chemotherapy regimens that take months to deliver. But Bexxar is given as a single treatment, completed within one week, which makes it an extremely convenient regimen for patients," Kaminski says.

Non-Hodgkin's lymphoma, the nation's sixth leading cause of cancer death, is a cancer of the lymph system, which is part of the immune system. Follicular lymphoma is the second most common type of non-Hodgkin's lymphoma. Lymphoma spreads easily through the lymph system and the bloodstream and consequently tends to be widespread when it is diagnosed. Traditional treatment often involves intensive chemotherapy, or a combination of chemotherapy and the monoclonal antibody rituximab. These treatments are usually given every three weeks over a span of up to six months and can cause many unpleasant side effects, including nausea, hair loss and infections.

Bexxar, whose chemical name is tositumomab and iodine I 131 tositumomab, combines an antibody that seeks out cancer cells, and a radioactive form of the element iodine. When injected, it travels like a guided missile through the bloodstream to bind to a protein found on the surface of the cancerous cells. The radiation zaps these malignant cells with minimal exposure to normal tissues.

With the Bexxar therapeutic regimen, a patient receives an injected test dose of radioactive Bexxar, followed one to two weeks later with a custom-tailored therapeutic dose. After that, the therapy is considered complete. The most common side effect is a temporary lowering of blood counts several weeks after the treatment. There is no hair loss and nausea is rare.

Kaminski and his colleague Richard Wahl (formerly at U-M and now at Johns Hopkins University) developed the Bexxar regimen, which received approval from the U.S. Food and Drug Administration in June 2003 to treat follicular non-Hodgkin's lymphoma after other treatments have failed. The current results involve Bexxar as a first-line treatment for this disease.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.bexxar.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>