Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finger length helps predict SAT exam results

23.05.2007
The results of numeracy and literacy tests for seven-year-old children can be predicted by measuring the length of their fingers, shows new research.

In a study to be published in the British Journal of Psychology, scientists compared the finger lengths of 75 children with their Standardised Assessment Test (SAT) scores.

They found a clear link between a child’s performance in numeracy and literacy tests and the relative lengths of their index (pointing) and ring fingers.

Scientists believe that the link is caused by different levels of the hormones testosterone and oestrogen in the womb – and the effect they have on both brain development and finger length.

“Testosterone has been argued to promote development of the areas of the brain which are often associated with spatial and mathematical skills,” said Dr Mark Brosnan, Head of the Department of Psychology at the University of Bath, who led the study.

“Oestrogen is thought to do the same in the areas of the brain which are often associated with verbal ability.

“Interestingly, these hormones are also thought have a say in the relative lengths of our index and ring fingers.

“We can use measurements of these fingers as a way of gauging the relative exposure to these two hormones in the womb and as we have shown through this study, we can also use them to predict ability in the key areas of numeracy and literacy.”

The researchers made photocopies of the palm of the children’s hands and then measured the length of their index finger and ring finger on both hands using callipers, accurate to 0.01mm.

They then divided the length of the index finger by that of the ring finger – to calculate the child’s digit ratio.

When they compared this ratio to the children’s SAT scores, they found that a smaller ratio (i.e. a longer ring finger and therefore greater prenatal exposure to testosterone) meant a larger difference between ability in maths and literacy, favouring numeracy relative to literacy.

When they looked at boy’s and girl’s performance separately, the researchers found a clear link between high prenatal testosterone exposure, as measured by digit ratio, and higher numeracy SAT scores in males.

They also found a link between low prenatal testosterone exposure, which resulted in a shorter ring finger compared with the index finger, and higher literacy SAT scores for girls.

This, says the scientists behind the study, suggests that measurements of finger length could help predict how well children will do in maths and literacy.

“We’re not suggesting that finger length measurements could replace SAT tests,” said Dr Brosnan.

“Finger ratio provides us with an interesting insight into our innate abilities in key cognitive areas.

“We are also looking at how digit ratio relates to other behavioural issues, such as technophobia, and career paths.

“There is also interest in using digit ratio to identify developmental disorders, such as dyslexia, which can be defined in terms of literacy deficiencies.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/5/23/fingerlength.html

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>