Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocomposite Labeled Cancer Cells Can Be Targeted and Destroyed Using Lasers

22.05.2007
A nanocomposite particle can be constructed so that it has a mix of properties that would not otherwise happen in nature. By combining an organic matrix with metallic clusters that can absorb light, it is possible to incorporate such particles into cells and then destroy those targeted cells with a laser.

In a presentation at the NSTI Nanotech 2007 Conference, researchers describe work conducted at the NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY and the University of Michigan, Ann Arbor, MI, regarding the creation and characterization of a dendrimer nanocomposite (DNC) matrix containing silver clusters that can be used to target and destroy melanoma cancer cells.

Composite NanoDevices (CNDs), are an emerging class of hybrid nanoparticulate materials. CNDs are made from dendrimer-based polymers, for example from poly(amidoamine) [(PAMAMs)].

To visualize the device, Dr. Lajos P. Balogh says simply think of nanoscale, dense, but soft “tumbleweed,” where clusters of inorganic materials (such as silver) can be trapped inside. The CND “tumbleweed” device can be made in discrete sizes, carry different electric charges and can encapsulate different materials inside. This design offers researchers a wider choice of size, surface functionality and payload than traditional small in vivo devices where the agent is conjugated directly to the surface.

A laser can be used to kill cells indiscriminately, but it is really a blunt instrument. High powered lasers do so much damage that the tissue becomes opaque to further light. Yet, lower-powered lasers do not deliver enough energy to kill cells. By labeling cells with CNDs, light absorption can be selectively and locally enhanced wherever composite nanodevices are present. Irradiation of the mix of labeled and unlabeled cells by laser light, causes tiny bubbles to form that disrupt and damage the labeled cells, but leave unlabeled cells unaffected. This technology holds promise as an alternative therapy for cancer patients.

According to Dr. Balogh, “The DNC is a multi-functional platform. Because it can carry multiple agents inside, yet present a simple outer surface to the body, it can be programmed to deliver those agents to a particular organ or tissue.”

The presentation is “Selective Destruction of Nanocomposite Labeled Cells” by Lajos P. Balogh Ph.D., FAANM, Christine Tse Ph.D., Wojciech Lesniak Ph.D., Jing Yong Ye Ph.D., Marwa Zohdy Ph.D., Matthew O’Donnell Ph.D., and Mohamed K. Khan M.D., Ph.D., FACRO, FAANM. The authors are from The NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (Balogh, Lesniak, Khan), the University of Michigan, Biomedical Engineering Department, Ann Arbor, MI (Tse, Zohdy, O’Donnell) and the University of Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (Ye). It will be given at the NSTI Nanotech 2007 conference in Santa Clara, CA on May 24, 2007 (Santa Clara Convention Center, Grand Ballroom D, 11:50 AM).

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Jami Walker | alfa
Further information:
http://www.elsevier.com/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>