Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Wrapping' Gleevec fights drug-resistant cancer

03.05.2007
Re-engineered drug effective against both drug-resistant, nonresistant cells

A new study highlighted on the cover of this week's issue of Cancer Research finds that the anti-cancer drug Gleevec® is far more effective against a drug-resistant strain of cancer when the drug wraps the target with a molecular bandage that seals out water from a critical area. The research appears as a priority report in the journal's May 1 issue.

The wrapping version of the drug – known as WBZ-7 – was created, produced and tested by three research teams, one headed by Ariel Fernandez from Rice University and the other two headed respectively by William Bornmann and Dr. Gabriel Lopez-Berestein from the University of Texas M. D. Anderson Cancer Center in Houston. The work sprang from a new collaborative partnership between the two institutions. In laboratory studies, WBZ-7 was found to be effective against a form of gastrointestinal cancer that has developed a resistance to imatinib, the drug sold under the brand name Gleevec®.

Imatinib is one of the most effective of a new generation of cancer drugs that are designed to attack cancer cells and leave healthy cells unharmed. Imatinib targets a protein called KIT that plays a role in cell reproduction. In healthy cells, KIT is active only on rare occasions, but in some cancers the protein is always "on," acting as a biochemical catalyst that spurs cancer cells to constantly reproduce.

"The re-engineered version of imatinib accomplishes three things," said Rice bioengineering professor Ariel Fernandez, who designed the modified drug. "It binds with KIT. It binds with the most effective imatinib-resistant version of KIT. And finally, it binds in a way that ensures that any further version of KIT that becomes resistant to WBZ-7 will no longer be effective as a catalyst for cell reproduction."

Fernandez and his Rice colleagues – postdoctoral researcher Alejandro Crespo and graduate student Xi Zhang – developed the wrapping Gleevec® variant WBZ-7. The wrapping prototype is a kind of molecular bandage that's designed to keep water molecules from getting near the "active site" of KIT – the part of the protein that imatinib targets.

"Like virtually all proteins, KIT has packing defects that leave some hydrogen bonds poorly shielded from water attack," Fernandez said. "These bonds, which are called dehydrons, are in the twilight zone between order and disorder."

In KIT, there is a dehydron near the active site that plays a key role in drug resistance. WBZ-7 seals off this dehydron.

Fernandez said WBZ-7 is identical to imatinib, save for the addition of four atoms – a carbon and three hydrogens – at a key point. Though the change appears to be minimal at first glance, finding a method to synthesize the compound was complex and challenging, Fernandez said. The task fell on Bornmann, a director of the Center for Targeted Therapy's Translational Chemistry Service, and his colleagues Shimei Wang and Zhenghong Peng – who dubbed the compound WBZ-7 based on their initials and the fact that it was the seventh compound they'd made together.

Following the drug's synthesis, a second team of M. D. Anderson researchers, led by Lopez-Berestein, a professor in the Department of Experimental Therapeutics, and including Angela Sanguino and Eylem Ozturk, embarked on a comprehensive testing program. In the first stage of testing, WBZ-7's effects were tested against more than 250 catalytic proteins called kinases, which are in the same class of proteins as KIT, to make sure the drug would not have unintended consequences. Finally, a range of in vitro tests were conducted. The tests confirmed that WBZ-7 was just as effective against both non-resistant and drug-resistant strains of gastrointestinal cancer cells.

WBZ-7 is not yet available for human testing, and a date for human trials has not been set. Fernandez said the research team is preparing for the next phase of testing in laboratory animals.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>