Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reports Changing to a Low-Fat Diet Can Induce Stress

18.04.2007
Changing one’s diet to lose weight is often difficult. There may be physical and psychological effects from a changed diet that reduce the chances for success.

With nearly 65% of the adult population currently classified as overweight or obese and with calorically dense foods high in fat and carbohydrates readily available, investigating those factors that contribute to dieting failures is an important effort. In a study in the May 1st issue of Biological Psychiatry, researchers found that mice withdrawn from high-fat or high-carbohydrates diets became anxious and showed changes in their brains indicating higher stress levels.

Using a variety of standard measures of mouse behavior, researchers acclimated mice to either high-fat (HF) or high-carbohydrate (HC) diets, abruptly replaced those diets with standard chow, and observed behavioral changes. The brains of the mice were also examined for increases in corticotrophin releasing factor (CRF) levels which can indicate high stress levels.

Writing in the article, Tracy L. Bale, Ph.D., states, “Our behavioral, physiologic, biochemical, and molecular analyses support the hypothesis that preferred diets act as natural rewards and that withdrawal from such a diet can produce a heightened emotional state.” Once deprived of their preferred diet, mice would overcome their natural aversion to bright environments to obtain the HF foods, even when standard food was available. The authors continue, “These results strongly support the hypothesis that an elevated emotional state produced after preferred-diet reduction provides sufficient drive to obtain a more preferred food in the face of aversive conditions, despite availability of alternative calories in the safer environment. Our results may suggest that, similar to the case of an individual who is in withdrawal from a rewarding substance, these mice effectively are displaying risk-taking behavior to obtain a highly desirable substance, supporting the powerful rewarding aspects of the HF food.”

The article is “Decreases in Dietary Preference Produce Increased Emotionality and Risk for Dietary Relapse” by Sarah L. Teegarden and Tracy L. Bale, of the Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania. It appears in Biological Psychiatry, Volume 61, Issue 9, (May 1, 2007), published by Elsevier.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>