Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model helps researchers 'see' brain development -- Work could facilitate early detection of autism

10.04.2007
Large mammals--humans, monkeys, and even cats--have brains with a somewhat mysterious feature: The outermost layer has a folded surface. Understanding the functional significance of these folds is one of the big open questions in neuroscience.

Now a team led by MIT, Massachusetts General Hospital and Harvard Medical School researchers has developed a tool that could aid such studies by helping researchers "see" how those folds develop and decay in the cerebral cortex.

By applying computer graphics techniques to brain images collected using magnetic resonance (MR) imaging, they have created a set of tools for tracking and measuring these folds over time. Their resulting model of cortical development may serve as a biomarker, or biological indicator, for early diagnosis of neurological disorders such as autism.

The researchers describe their model and analysis in the April issue of IEEE Transactions on Medical Imaging.

Peng Yu, a graduate student in the Harvard-MIT Division of Health Sciences and Technology (HST), is first author on the paper. The work was led by co-author Bruce Fischl, associate professor of radiology at Harvard Medical School, research affiliate with the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and HST, and director of the computational core at the HST Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH).

The team started with a collection of MR images from 11 developing brains, provided by Ellen Grant, chief of pediatric radiology at MGH and the Martinos Center. Of the subjects scanned, eight were newborn, mostly premature babies ranging from about 30 to 40 weeks of gestational age, and three were from children aged two, three and seven years. Grant scanned these infants and children to assess possible brain injury and found no neural defects. Later, she also consulted with Fischl's team to ensure that their analyses made sense clinically.

"We can't open the brain and see by eye, but the cool thing we can do now is see through the MR machine," a technology that is much safer than earlier techniques such as X-ray imaging, said Yu.

The first step in analyzing these images is to align their common anatomical structures, such as the "central sulcus," a fold that separates the motor cortex from the somatosensory cortex. Yu applied a technique developed by Fischl to perform this alignment.

The second step involves modeling the folds of the brain mathematically in a way that allows the researchers to analyze their changes over time and space.

The original brain scan is then represented computationally with points. Charting each baby's brain requires about 130,000 points per hemisphere. Yu decomposed these points into a representation using just 42 points that shows only the coarsest folds. By adding more points, she created increasingly finer-grained domains of smaller, higher-resolution folds.

Finally, Yu modeled biological growth using a technique recommended by Grant that allowed her to identify the age at which each type of fold, coarse or fine, developed, and how quickly.

She found that the coarse folds, equivalent to the largest folds in a crumpled piece of paper, develop earlier and more slowly than fine-grained folds.

In addition to providing insights into cortical development, the team is now comparing the images to those being collected from patients with autism. "We now have some idea of what normal development looks like. The next step is to see if we can detect abnormal development in diseases like autism by looking at folding differences," said Fischl. This tool may also be used to shed light on other neurological diseases such as schizophrenia and Alzheimer's disease.

In addition to Yu, Grant and Fischl, co-authors on the paper are postdoctoral associate Yuan Qi and Assistant Professor Polina Golland of CSAIL (Golland also holds an appointment in MIT's Department of Electrical Engineering and Computer Science); Xiao Han of CMS Inc.; Florent Segonne of Certis Laboratory; Rudolph Pienaar, Evelina Busa, Jenni Pacheco and Nikos Makris of the Martinos Center; and Randy L. Buckner of Harvard University and the Martinos Center.

The research was supported by the National Center for Research Resources, the National Institutes of Health, the Washington University Alzheimer's Disease Research Center, and the Mental Illness and Neuroscience Discovery (MIND) Institute. It is part of the National Alliance for Medical Image Computing, funded by the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>