Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds music training 'tunes' human auditory system

14.03.2007
A newly published study by Northwestern University researchers suggests that Mom was right when she insisted that you continue music lessons -- even after it was clear that a professional music career was not in your future.

The study, which will appear in the April issue of Nature Neuroscience, is the first to provide concrete evidence that playing a musical instrument significantly enhances the brainstem’s sensitivity to speech sounds. This finding has broad implications because it applies to sound encoding skills involved not only in music but also in language.

The findings indicate that experience with music at a young age in effect can "fine-tune" the brain's auditory system. "Increasing music experience appears to benefit all children -- whether musically exceptional or not -- in a wide range of learning activities," says Nina Kraus, director of Northwestern's Auditory Neuroscience Laboratory and senior author of the study.

"Our findings underscore the pervasive impact of musical training on neurological development. Yet music classes are often among the first to be cut when school budgets get tight. That's a mistake," says Kraus, Hugh Knowles Professor of Neurobiology and Physiology and professor of communication sciences and disorders.

"Our study is the first to ask whether enhancing the sound environment -- in this case with musical training -- will positively affect the way an individual encodes sound even at a level as basic as the brainstem," says Patrick Wong, primary author of "Musical Experience Shapes Human Brainstem Encoding of Linguistic Pitch Patterns." An old structure from an evolutionary standpoint, the brainstem once was thought to only play a passive role in auditory processing.

Using a novel experimental design, the researchers presented the Mandarin word "mi" to 20 adults as they watched a movie. Half had at least six years of musical instrument training starting before the age of 12. The other half had minimal (less than 2 years) or no musical training. All were native English speakers with no knowledge of Mandarin, a tone language.

In tone languages, a single word can differ in meaning depending on pitch patterns called "tones." For example, the Mandarin word "mi" delivered in a level tone means "to squint," in a rising tone means "to bewilder," and in a dipping (falling then rising) tone means "rice." English, on the other hand, only uses pitch to reflect intonation (as when rising pitch is used in questions).

As the subjects watched the movie, the researchers used electrophysiological methods to measure and graph the accuracy of their brainstem ability to track the three differently pitched "mi" sounds.

"Even with their attention focused on the movie and though the sounds had no linguistic or musical meaning for them, we found our musically trained subjects were far better at tracking the three different tones than the non-musicians," says Wong, director of Northwestern’s Speech Research Laboratory and assistant professor of communication sciences and disorders.

The research by co-authors Wong, Kraus, Erika Skoe, Nicole Russo and Tasha Dees represents a new way of defining the relationship between the brainstem -- a lower order brain structure thought to be unchangeable and uninvolved in complex processing -- and the neocortex, a higher order brain structure associated with music, language and other complex processing.

These findings are in line with previous studies by Wong and his group suggesting that musical experience can improve one’s ability to learn tone languages in adulthood and level of musical experience plays a role in the degree of activation in the auditory cortex. Wong also is a faculty member in Northwestern’s Interdepartmental Neuroscience Program.

The findings also are consistent with studies by Kraus and her research team that have revealed anomalies in brainstem sound encoding in some children with learning disabilities which can be improved by auditory training.

"We've found that by playing music -- an action thought of as a function of the neocortex -- a person may actually be tuning the brainstem," says Kraus. "This suggests that the relationship between the brainstem and neocortex is a dynamic and reciprocal one and tells us that our basic sensory circuitry is more malleable than we previously thought."

Overall, the findings assist in unfolding new lines of inquiry. The researchers now are looking to find ways to "train" the brain to better encode sound – work that potentially has far-reaching educational and clinical implications. The study was supported by Northwestern University, grants from the National Institutes of Health and a grant from the National Science Foundation.

Wendy Leopold | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>