Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study confirms imaging compound identifies amyloid-beta in human brain

13.03.2007
Imaging with Pittsburgh Compound B may track treatment results, not sufficient for diagnosis

A team led by Massachusetts General Hospital (MGH) investigators has confirmed that the imaging agent Pittsburgh Compound B (PiB) binds to the protein in amyloid plaques that characterize Alzheimer's disease in the human brain. Their report in the March Archives of Neurology describes the first postmortem neuropathological study of a dementia patient who had previously participated in a PET imaging study using PiB.

"This report is an essential validation of the use of PET imaging with PiB to identify amyloid-beta deposits in the brain and as a marker of disease progression that could be used to track the benefit of new treatments," says John Growdon, MD, director of the MGH Memory Disorders Unit, the paper's senior author. "It also indicates that the interpretation of PiB PET scanning needs to be done in the context of a patient's clinical symptoms and other diagnostic studies."

Alzheimer's disease is characterized by plaques within the brain of amyloid-beta protein, which is toxic to brain cells. Previous studies have shown that PiB, invented by researchers at the University of Pittsburgh School of Medicine, binds to amyloid-beta in the brains of mice and can be detected by PET scan in the brains of human patients with a diagnosis of probable Alzheimer's disease. But since a definitive Alzheimer's diagnosis can be made only on autopsy, there had been no confirmation that PiB in human brains was detecting amyloid-beta deposits.

The Archives of Neurology report describes the case of an elderly man with symptoms that could indicate several neurological disorders. He was evaluated numerous times over a period of three years, including a standard PET scan that produced results suggesting Alzheimer's disease. His eventual diagnosis was dementia with Lewy bodies, a condition that can exist along with Alzheimer's. He also enrolled in a research study involving PiB imaging, and the results of his scan showed the imaging compound had been taken up throughout the cerebral cortex, the outer layer of the brain. Three months after participating in the imaging study, the patient died at the age of 76 following a head injury, and an autopsy was performed.

The autopsy confirmed the diagnosis of dementia with Lewy bodies and had several findings characteristic of Alzheimer's disease. While some plaques that typify Alzheimer's were seen, most amyloid-beta was found in the walls of blood vessels, a condition known as cerebral amyloid angiopathy.

"The distribution of amyloid seen at autopsy matched the overall distribution seen in the PiB imaging study; levels were higher in the cerebral cortex than in other areas of the brain," says Matthew Frosch, MD, PhD, of the MassGeneral Institute for Neurodegenerative Diseases (MGH-MIND), a study co-author. "Features of Alzheimer's pathology, amyloid plaques and neurofibrillary tangles, were observed, but not at a level that would support a separate diagnosis of Alzheimer's disease."

The researchers note that, while their results confirm that uptake of PiB indicates the presence of amyloid in the brain, a positive PiB PET scan cannot be equated with a definitive Alzheimer's diagnosis. "About 15 percent of control participants in previous PiB studies, people with no cognitive impairment, had some level of PiB uptake," says Brian Bacskai, PhD, of MGH-MIND, the paper's lead author. "Some participants who probably had Alzheimer's had low uptake, and uptake levels varied for those with a diagnosis of mild cognitive impairment. Once a safe and effective drug for removing amyloid from the brain or preventing its accumulation is developed, it will be important to see how closely PiB PET scans can track those effects."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>