Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind a wrinkle-filler: Researchers discover for the first time how product works

22.02.2007
University of Michigan study on dermal filler Restylane shows that it causes the skin to create more collagen

The current battle between the makers of anti-wrinkle products – widely compared with the Coke and Pepsi struggle for superiority – is receiving an injection of scientific understanding with the release of a new study from the University of Michigan Health System.

The study is the first to discover that one of the fillers – known by the brand-name Restylane – works by stretching fibroblasts, the cells in the skin that make collagen, in a way that causes the skin to create new collagen. This new, natural collagen then would contribute to the reduction of the appearance of creases and wrinkles. The study also shows that the product seems to inhibit the breakdown of existing collagen.

“Prior to our research, it has been thought that Restylane’s physical volume caused the improvement in the appearance of one’s skin,” says senior author John J. Voorhees, M.D., the Duncan and Ella Poth Distinguished Professor and chair of the Department of Dermatology at the U-M Medical School.

“It is true that the physical presence of the product increases volume in the skin. Our research makes clear that injection of the product leads to creation of new collagen, which contributes to reduction in creases and wrinkles in a person’s aging skin,” Voorhees says.

The paper appears in the new issue of the journal Archives of Dermatology. Funding was provided by the U-M Department of Dermatology Cosmetic Research Fund, the Babcock Research Endowment at U-M and grants from the National Institutes of Health.

While Medicis Aesthetics provided the Restylane syringes used in the study, the company (which makes Restylane) had no involvement in the collection, management, analysis and interpretation of the data. The company also was not involved in the preparation or review of the manuscript.

Restylane has been in the news frequently in recent months, in part because of a competition between Medicis and Allergan Inc., the maker of the dermal filler Juvederm. More than one observer has compared the rivalry to the height of the “cola wars” between Coke and Pepsi. These fillers are used to reduce the appearance of creases and wrinkles on the lower part of the face.

The findings of the study are based on injections in 11 volunteers, ages 64 to 84 years, and the subsequent analyses of the skin biopsies (including immunostaining and gene expression).

Some of the key findings relate to fibroblasts, which are in the dermis, the layer of the skin below the epidermis (outer layer). In young people, fibroblasts are stretched, and this produces enough collagen to make the skin appear relatively smooth. As people age, the fibroblasts become relaxed and do not stretch as easily, and therefore do not release as much collagen, causing creases and wrinkles to appear.

With the injection of Restylane in this study, the relaxed fibroblasts were re-stretched, says lead author Frank Wang, M.D., research fellow with the U-M Department of Dermatology. In a sense, this stretching encourages the fibroblasts to behave in the way they do in younger skin and to release collagen.

Another factor is that in older skin, an enzyme called collagenase breaks down the collagen in the skin. The research found that injection of this dermal filler inhibits the breakdown of collagen by collagenase, which also helps with the appearance of one’s skin, Wang says.

The study notes that procedures involving dermal fillers are increasingly common. Of the 12 million cosmetic procedures performed annually in the United States, about 1 million currently involve the class of injectable fillers that includes Restylane, according to the researchers.

Katie Gazella | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>