Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology captures tumors' genetic profile, guides cancer treatment

12.02.2007
A study led by researchers at Dana-Farber Cancer Institute and Broad Institute of the Massachusetts Institute of Technology and Harvard University provides the first demonstration of a practical method of screening tumors for cancer-related gene abnormalities that might be treated with "targeted" drugs.

The findings, published online today on the Nature Genetics Web site, may help relieve a bottleneck between scientists' expanding knowledge of the genetic mutations associated with cancer and the still nascent ability of doctors to use that knowledge to benefit patients. The results constitute an important step toward the era of "personalized medicine," in which cancer therapy will be guided by the particular set of genetic mutations within each patient's tumor, the authors suggest.

"It's universally recognized that cancer is a disease of the genome, of mutations within genes responsible for cell growth and survival, and a great deal of effort has gone into finding those mutations, to the point where several hundred to a thousand are now known," said the study's senior author, Levi Garraway, MD, PhD, of Dana-Farber and the Broad Institute. "The challenge has been how to determine which of them are involved in each of the hundreds of kinds of cancer that occur in humans -- and to develop accurate, affordable methods of detecting key mutations in tumor samples. This study suggests that such a method is feasible on a large scale."

The authors took advantage of a scientific serendipity to devise a simple test to detect important cancer mutations. Mutations in oncogenes (genes linked to cancer) do not occur randomly; rather, they seem to arise most frequently in certain regions of the oncogenes. As a result, researchers didn't necessarily have to scan the entire length of each gene, but could focus instead on the sections most likely to harbor mutations.

They performed these screenings with a technology known as high-throughput genotyping, a fast, relatively inexpensive way of profiling gene mutations within cells. It involves extracting DNA from a tumor sample, copying this material thousands of times, depositing segments of it in tiny "wells" on a small plate, and mixing in reagents that reveal whether each segment carries a specific mutation. Automated equipment then reads the plates to determine which mutations are present in each sample.

In the study, the researchers scanned 1,000 human tumor samples for 238 known mutations in 17 specific oncogenes. (Those 17 were chosen because they are mostly "classic, well-known" contributors to cancer, Garraway stated.) They found at least one mutation in 298 of the samples, or 30 percent of the entire group, which was in keeping with the rates reported in scientific literature for the types of cancer examined.

"Mutations were identified in the percentages we expected," Garraway said, "which indicates this technique is on-target for the mutations we were interested in. Overall, the technique worked very well: we were able to obtain mutation profiles that were accurate, sensitive, and cost-effective." The cost of processing each sample was between $50 and $100, although the figure would probably be somewhat higher if the technology were used in cancer clinics to test for large numbers of oncogene mutations.

The scans produced some surprises as well. Mutations were found in several types of tumors where they had not been previously recognized. Researchers also discovered an unexpectedly large number of instances where the same set of mutations co-occurred within tumor cells, suggesting that oncogenes often work in partnership.

As promising as high-throughput genotyping is for cancer treatment and research, its capacity will need to be expanded so it can handle larger numbers of mutations. The next step, Garraway explained, would be to work with clinical investigators to explore whether use of the technology is feasible in a clinical setting and whether it actually improves doctors' ability to classify and treat individual tumors.

"We've shown the practical potential of this technique," observed Garraway, who is also an instructor in medicine at Harvard Medical School. "It is a step toward the day when cancer patients will routinely have their tumors scanned for specific mutations, and treatment will be based on the cancer's particular genetic profile."

Robbin Ray | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>