Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common anesthetic may induce cell death, generation of Alzheimer's-associated protein

08.02.2007
A new study has found how one of the most commonly used anesthetics may produce Alzheimer's-like changes in the brain. Previous studies have shown that applying the anesthetic isoflurane to cultured neural cells can lead to generation of amyloid-beta protein -- the key component of senile plaques seen in the brains of Alzheimer's patients -- and to the cell-death process known as apoptosis.

In the Feb. 7 Journal of Neuroscience, researchers from Massachusetts General Hospital (MGH) and colleagues describe how isoflurane may set off a process in which A-beta generation and apoptosis interact with and magnify each other. Since this work was done in cell cultures, it is unknown whether the findings reflect a possible effect of the anesthetic on human brains.

"Our studies have shown that isoflurane may induce a vicious cycle of apoptosis, amyloid-beta generation, and further rounds of apoptosis leading to cell death," says Zhongcong Xie, MD, PhD, of the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND), the study's lead author. "If future studies support these findings, they suggest that caution be used in choosing this anesthetic for elderly patients, who already are at increased risk for Alzheimer's and for postoperative cognitive dysfunction." Xie is also associated with the MGH Department of Anesthesia and Critical Care.

Alzheimer's disease is characterized by plaques within the brain of amyloid-beta protein (A-beta), which is toxic to brain cells. A-beta is formed when the larger amyloid precursor protein (APP) is clipped by two enzymes -- beta-secretase, also known as BACE, and gamma-secretase -- to release the A-beta fragment. Normal processing of APP by an enzyme called alpha-secretase produces an alternative, non-toxic protein.

Some studies have indicated that general anesthesia may increase the risk of developing Alzheimer's disease. It also is known that a small but significant number of surgical patients experience a form of dementia in the postoperative period, but there is insufficient evidence of a direct connection between anesthesia and the risk of dementia. Previous articles -- including a recent report from the same research team -- have shown that isoflurane increases both A-beta generation and apoptosis in several types of cultured cells. The current study was designed to investigate the relationship between isoflurane-induced apoptosis and A-beta generation.

In a series of experiments, the researchers first found that applying isoflurane to cultured neural cells increased the activation of the enzyme caspase -- a key player in a pathway leading to apoptosis -- with no change in A-beta generation or APP processing. When they applied isoflurane to neural cells that express APP and had been treated with a caspase inhibitor, the expected changes in APP processing and A-beta generation were significantly reduced, indicating that caspase activation is essential to the pathway leading to A-beta generation and aggregation.

The researchers also found that isoflurane appears to raise levels of the A-beta-releasing enzymes BACE and gamma secretase and that generation of A-beta plaques further increases isoflurane-induced caspase activation. In addition, adding A-beta to neuronal cells that do not express APP also increased caspase activation in response to isoflurane. Overall, the study's results define molecular pathways by which isoflurane induces deposition of A-beta, both directly and via caspase activation, and by which A-beta deposits lead to further caspase activation and apoptosis.

"Even though our findings and those from other studies suggest that isoflurane may affect Alzheimer's pathogenesis, these experiments were performed in cultured cells only," says Rudolph Tanzi, PhD, director of the MGH-MIND Genetics and Aging Research Unit and senior author of the current paper. "We need to conduct in vivo studies before we can determine whether these results might be relevant to the development of delirium or Alzheimer's disease in human patients." Tanzi is a professor of Neurology at Harvard Medical School, where Xie is an assistant professor of Anesthesia. The researchers also plan to investigate whether other anesthetic agents may produce the same results seen with isoflurane, which is the only anesthetic tested in previous studies.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>