Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI detects early heart damage in patients with sarcoidosis

14.11.2006
To detect heart damage early in patients with the immune system disorder sarcoidosis, who are at elevated risk of dieing from heart problems, magnetic resonance imaging is twice as sensitive as conventional methods, according to a study by Duke University Medical Center cardiologists.

By using magnetic resonance imaging, or MRI, to discover minute areas of heart damage before they grow larger, physicians may be able to take action to prevent sudden cardiac death, which is a leading cause of death in patients with sarcoidosis, the researchers said.

Sarcoidosis is characterized by the formation of tiny inflammatory growths called granulomas. Although granulomas tend to cluster in the lungs, in lymph nodes and under the skin, they also can form in the heart. When they do, it currently is difficult to determine which patients will develop heart damage, the researchers said.

"We found that MRI was sensitive in detecting small areas of damage in the hearts of patients with sarcoidosis, and we were further able to correlate these areas of damage with future adverse outcomes," said Duke cardiologist Manesh Patel, M.D., who presented the results of the study on Sunday, Nov. 12, at the annual scientific sessions of the American Heart Association, in Chicago. "The MRI technology is very good at obtaining high-resolution images of heart muscle and distinguishing normally functioning heart cells from those that are damaged or destroyed."

The study was supported by the Duke Cardiovascular Magnetic Resonance Center.

According to Patel, conventional methods identify cardiac damage in only 5 percent to 7 percent of sarcoidosis patients. The standard evaluation includes an electrocardiogram, which is an electrical test of the heart, coupled with one of a number of different cardiac imaging techniques.

But previous studies in which autopsies were performed on sarcoidosis patients indicate that up to 30 percent of such patients exhibit evidence of heart damage, he said.

"For this reason, we hypothesized that cardiac damage in sarcoidosis patients is more common and is often unrecognized, explaining why it could be a major cause of death in these patients," Patel said.

For their analysis, the Duke researchers identified 81 sarcoidosis patients consecutively referred for evaluation at Duke. All of the patients received a standard clinical evaluation including an electrocardiogram and on average 1.6 non-cardiac MRI imaging tests, and a cardiac MRI scan. The conventional method identified 10 patients (12.3 percent) with heart damage, while the cardiac MRI identified 21 patients (26 percent) with areas of heart damage, Patel said.

The damage observed often did not fit the pattern of damage caused by coronary artery disease, Patel said, a finding which suggested that the sarcoidosis was the cause of the damage.

The patients in the study were followed by their treating physicians for an average of 13 months, and Patel's team examined their records to see if they had died or had experienced medical problems related to the heart's electrical system.

According to Patel, it is commonly thought that when sarcoidosis damages a portion of heart muscle, the damaged areas can block or reroute the electrical impulses that keep the heart beating. Sudden cardiac death can occur when the heart's internal electrical system is disrupted, causing the heart to beat erratically and, in some cases, to stop.

By the end of the follow-up period, five patients had died from cardiac causes, two had experienced heart-beat abnormalities requiring treatment to bring the heart back into normal rhythm and one needed a pacemaker implanted to maintain normal heart rhythm, Patel said.

The imaging technique that the team used is called delayed enhancement cardiac MRI. In this approach, the researchers inject trace amounts of the element gandolinium into patients before administering the MRI scan.

"Gandolinium is an inert metal, and it cannot enter normally functioning heart muscle cells," Patel said. "However, if small areas of heart muscle are damaged, there are areas that absorb the gandolinium like a sponge. The MRI then detects where the gandolinium accumulates and shows us where the damage is located."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>