Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why exercising muscles tire when needed most

09.11.2006
Researchers at Rice and Harvard link metabolism to muscle fatigue in the body

The cause of muscle fatigue during intense exercise is linked directly to the muscle’s reliance on anaerobic metabolism for force production, according to a new study by researchers at Rice and Harvard universities.

Published in the November issue of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, the study implicates the reliance on anaerobic energy release as a key factor in the onset of muscle fatigue and impaired exercise performance. While the mechanism of how anaerobic pathways might impair force production remains under active investigation, the new results suggest that the mechanisms of muscular fatigue in the body are probably similar to the mechanisms being discovered in laboratory research on cell and tissue samples.

The researchers had six males perform 15 all-out sprints on a stationary cycle at varying pedal forces, which meant varying muscle-force requirements. Besides conventional cycling, the researchers also had the study participants perform similar all-out sprints with only one leg while the unused leg rested on an adjacent stool. Although this approach may seem unorthodox, the Rice-Harvard group knew from previous work that the metabolic pathways providing the chemical energy necessary for contraction would differ appreciably during the one- and two-legged conditions, said principal investigator Peter Weyand, assistant professor in kinesiology at Rice.

During exercise, muscles continuously break down and resynthesize the chemical ATP (adenosine triphosphate), which serves as the immediate source of energy for muscle contractions. During less vigorous muscular activity, essentially all of the ATP needed for muscular contraction can be provided via aerobic pathways that utilize oxygen delivered via the bloodstream. The aerobic pathways allow moderate levels of force to be generated without fatigue for prolonged periods, but can only support modest levels of muscular activity, due to the upper limits on how rapidly blood and oxygen can be supplied to the working muscles by the heart. Consequently, during more vigorous exercise, such as sprinting or lifting heavy loads or weights, the aerobic provision of ATP is supplemented by anaerobic pathways that do not rely on oxygen delivery. While the anaerobic pathways provide ATP very rapidly, their capacity is finite and must be replenished after each bout.

The researchers knew that the rates of oxygen delivery, aerobic metabolism and the amount of “aerobic” muscle force generated would be much greater in the active leg under the one-legged condition simply because the heart and circulation can provide relatively more blood and oxygen when only one limb is active. Thus, the researchers were confident that a much greater fraction of the muscle force required would be provided via chemical energy that came from aerobic pathways for all of the one-legged versus the two-legged sprint trials.

The cyclists were asked to pedal stationary cycles for a series of sprints at the rate of 100 revolutions per minute, continuing an all-out effort until they could no longer maintain this speed for at least five seconds. The researchers simultaneously measured the forces the subjects applied to the pedals, the amount of oxygen they inhaled and the electrical activity of the thigh muscles used to apply pedal force. Electrodes were attached to the skin of the thigh to measure electrical activity in the leg muscles.

Weyand and colleagues found that the electrical activity of the leg muscles increased throughout each workout. Such increases are common during fatiguing contractions as individual muscle fibers develop less force over time. “Under these conditions, the exercise can be continued only if the individual activates new, unfatigued muscle to augment the impaired force from the muscle fibers originally activated,” Weyand said. “The increase in electrical signals from the active muscles can be used to indirectly assess the amount of fatigue the muscles are experiencing.”

As the researchers had hypothesized, the subjects had much higher peak rates of aerobic metabolism and pedal forces per leg when they used just one leg. During both the one- and two-legged sprints performed at pedal forces greater than those that could be supported via the aerobic pathways, the researchers observed progressive increases in electrical activity in the thigh muscles. “This indicates that new muscle fibers were being recruited throughout each sprint trial to provide the muscle force necessary to maintain a constant pedal force required by the sprint,” Weyand said.

Due to the lesser pedal forces supported via the aerobic pathways during two-legged cycling, the onset of compensatory muscle recruitment occurred at lower thresholds of pedal and muscle force in this mode. Similarly, at equivalent pedal forces, the rates of increase in compensatory electrical activity in the muscles were greater during two-legged than one-legged sprint cycling. “We attribute these between-mode differences in the rates at which muscles become fatigued and additional muscle is recruited to the greater reliance on anaerobic pathways of ATP resynthesis for force production during two-legged cycling versus one-legged cycling,” Weyand said.

“Although scientists have observed similar fatiguing patterns of electrical activity in people holding heavy objects, performing calisthenics and fine-motor tasks, muscular force decrements had not been shown previously to be so closely linked to the anaerobic pathways of ATP resynthesis,” he said.

Weyand suggested that the study raises the possibility that relying on the anaerobic pathways for chemical energy might be intrinsically fatiguing. “Experts focusing on locomotion and whole-body activities have attributed performance limitations during running, cycling, swimming and other athletic activities that involve many muscles simultaneously to the maximum rates at which ATP can be resynthesized from all pathways and not to an impaired ability of skeletal muscles to produce force during contraction,” he said. “Although bicep curls might not induce huffing, puffing and the same level of discomfort incurred by an all-out sprint, your muscles might not know the difference.”

Weyand’s coauthors on the paper are Matthew Bundle, formerly a Rice research fellow in the Department of Kinesiology and now an assistant professor at the University of Wyoming; and Carrie Ernst, Matthew Bellizzi and Seth Wright, all at Harvard.

The study was funded by the U.S. Army Medical and Materiel Command, the National Institutes of Health and the National Research Council.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>