Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies possible mechanism for brain damage in Huntington's disease

06.10.2006
Mutant huntingtin protein may block production of factor key to energy metabolism

Researchers from the MassGeneral Institute for Neurodegenerative Disease (MIND) have identified a possible mechanism underlying how the gene mutation that causes Huntington's disease (HD) leads to the degeneration and death of brain cells.

In the Oct. 6 issue of Cell, they show that the abnormal form of the huntingtin protein, the product of the HD gene mutation, interferes with the production of a protein critical to cellular energy metabolism. The discovery is the first to bring together two processes believed to be involved in the pathology of HD – the conversion of genetic information into proteins and the production of energy within cells.

"Our study indicates that these two pathogenic mechanisms are linked, in that disruption of gene transcription by mutant huntingtin leads to abnormal energy metabolism, which affects energy-dependent cellular processes and results in neurodegeneration," says Dimitri Krainc, MD, PhD, of MIND and the MGH Department of Neurology, who led the research team. "The role of mitochondria [subcellular structures that produce the cells' energy] in the process of nerve cell dysfunction and death is an emerging theme in neurodegenerative disorders, but the mechanism behind HD has been elusive."

HD causes the degeneration and death of cells in the basal ganglia – an area deep within the brain – particularly in a structure called the striatum. Although the precise function of the huntingtin protein is still unknown, recent studies have suggested that the mutant form directly interferes with transcription of neuronal genes. Evidence also has pointed to disruptions in cellular energy metabolism as key factors in HD. As a result, the MIND team focused on a protein called PGC-1a, which is known to regulate energy in cells throughout the body. Their previous research had shown that mice in which the PGC-1a gene had been knocked out developed brain lesions in the striatum.

To investigate the possible effect of the HD mutation on PGC-1a, the researchers first examined brain tissue samples from presymptomatic HD patients and found that levels of the protein were significantly reduced in the portion of the striatum first affected by the disorder. Examination of the brains of PGC-1a knockout mice found decreased activity in metabolic pathways known to be involved in mitochondrial function – pathways also downregulated in human HD – and brain samples from HD patients also showed reduced expression of mitochondrial genes.

Within the striatum HD causes degeneration of medium spiny neurons, the most common cells within the structure. The reseachers found that PGC-1a levels in those particular neurons were much lower among mice with the HD mutation than in normal mice. In contrast, levels of the protein were dramatically higher in striatal cells not affected by HD, suggesting that PGC-1a may protect against neurodegeneration. Analysis of striatal cells from the HD mice also showed significant underexpression of both PGC-1a and key mitochondrial genes, further linking decreased protein levels with deficits in energy metabolism.

Additional experiments indicated that mutant huntingtin interferes with the production of PGC-1a by occupying the regulatory region of the PGC-1a gene and inhibiting its transcription. Delivery of a viral vector expressing PGC-1a into the striatum of mice with the HD mutation resulted in significantly less degeneration of neurons that expressed the injected PGC-1a than of other striatal cells, suggesting that it may be possible to restore the protein's protective effects.

"Our work provides specific, mechanistic evidence that energy deficits contribute to neuro-degeneration in HD and suggests that enhancing energy production in the brain may be neuroprotective. We are beginning to search for new compounds that could correct PGC-1a dysregulation and potentially reverse the disruption of energy metabolism in HD," says Krainc, who is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>