Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Round-the-clock monitoring by UH contributes to air quality study

14.09.2006
Solutions to pollution, ozone explored by atmospheric scientists collaborating on TexAQS-II Initiative

University of Houston scientists are joining more than 200 researchers from 60 institutions in the Texas Air Quality Study-II (TexAQS-II), to help alleviate the negative impact of air pollution on public health and economic development.

A scientific investigation into the key air quality issues of the eastern half of Texas, TexAQS-II is an initiative led by the National Oceanic and Atmospheric Administration (NOAA), using $2 million appropriated to the Environmental Protection Agency (EPA), to collect and model data in order to develop a more accurate profile of the region's atmosphere. UH's measurement and modeling programs in the department of geosciences are playing a large role in TexAQS-II, leading the way to create a Gulf Coast Air Quality Model.

With one of the most comprehensive measurement ground sites, UH is home to the Moody Tower Atmospheric Chemistry Facility – one of three super sites that offer the most all-inclusive chemical and meteorological measurement platforms measuring more than 50 variables. During the TexAQS-II initiative, the UH scientists running the Moody Tower facility are collaborating with more than 40 visiting scientists from several different universities and national labs.

As the only ground site of the three super sites, the Moody Tower facility is operational 24 hours a day, seven days a week and offers the most representative sample of what the average person typically breathes in on a daily basis. The other two super sites are NOAA-owned planes and boats, offering observation from the air and water.

"Since we are high up at 18 stories on the roof of UH's Moody Tower dormitory, we can offer a larger footprint of what is actually going on," said Bernhard Rappenglueck, associate professor of atmospheric science at UH. "From up here, we avoid local influences on the ground, such as cars and trucks driving by that would skew results, and can also detect pollutants not just from the Houston area, but even as far away as Mexico."

The Moody Tower vantage point also allows UH scientists to observe and measure the land and sea breeze effects, where during the course of a day aged pollution from the Port of Houston floats to Galveston and then blows back to Houston. The amount and diversity of chemicals measured from this UH super site number in the hundreds, including hydrocarbons from factories burning fossil fuel and from vegetation under environmental stress, carbon monoxide and formaldehyde from vehicle exhaust and a wide range of other harmful elements. The several combinations of these compounds that come together to form ozone, however, receive the most focus from researchers.

"Houston is ripe for ozone," said Barry Lefer, assistant professor of atmospheric science at UH. "Very basically, sunlight, nitrogen oxide and hydrocarbons react to make ozone, and water vapor helps that process along. So, with no short supply of sun and humidity, combined with all the exotic compounds of the chemical industry, Houston is not surprisingly one of the worst with regard to ozone noncompliance levels across the country."

Lefer stresses that the efforts of TexAQS-II will be a good test to see how industry has cleaned up since the first TexAQS initiative six years ago. In this second air quality study, he said, UH scientists are determining what the photochemical processes are, which ones are most important and what the best strategy is to solve the problems.

Along with the myriad measurement tools, gauges and computers on the roof of Moody Tower, weather balloons containing instruments to monitor ozone and other air quality factors are being launched through the end of September and are transmitting data electronically back to labs at UH before parachuting to the ground. From the UH super site, Rappenglueck's students are launching two to six of them each day, while Lefer's graduate students will launch 45 of these weather balloons near various refinery and petrochemical facilities. These balloon launches are a first for Houston, with Lake Charles, La., being the closest until now, and will help with ozone and weather forecasting.

Complementing Lefer and Rappenglueck's Atmospheric Chemistry Measurement Group, UH's modeling and forecasting arm – the Institute for Multi-dimensional Air Quality Studies – will extend the Moody Tower super site measurements by running them through UH atmospheric science professor Daewon Byun's sophisticated computational models to pinpoint what works and what doesn't. See a related release on Byun's recently unveiled ozone forecaster at http://www.uh.edu/admin/media/nr/2006/08aug/082106imaqs_

ozone_forecaster.html.

If Byun's models accurately work to forecast ozone and other air quality conditions with his measurement colleagues' data, then the existing UH super site and balloon efforts can be applied to other sites. However, if the model does not work properly, then Byun can find out what to fix – either on the measurement or modeling side – to perfect the process, such as getting the correct balance of chemistry, emissions and weather measurements.

"The complementary nature of modeling and measurement is key to atmospheric science," Byun said. "One of UH's main goals in the TexAQS-II initiative is for my modeling to extend the measurement efforts of my colleagues so that we can work together to reduce dangerous ozone levels and air pollution."

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>