Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study to investigate how fear and anxiety are formed in the brain

01.09.2006
About 25 per cent of us will experience the effects of anxiety disorders at some point in our lives, with sometimes dire repercussions for friends, family and our own well-being. Yet little is known about the molecular mechanisms in the brain which contribute to stress-induced anxiety.

A neuroscientist at the University of Leicester has recently been awarded major EU funding amounting to €1.7m over four years to investigate how fear and anxiety are formed in the brain, in a project that could lead to more efficient ways of treating stress-related conditions.

Dr Robert Pawlak, a researcher in the University’s Department of Cell Physiology and Pharmacology, has received the prestigious Marie Curie Excellence Grant to support his research project which will look at the mechanisms in the brain that lead to anxiety.

Fear memories are encoded as changes in neuronal connections called synapses, in a process known as plasticity. Dr Pawlak and his colleagues have recently shown that proteases (proteins that cut other proteins) play a critical role in this process and significantly contribute to fear and anxiety related to stress.

Dr Pawlak commented: “Understanding neural bases of stress, fear and anxiety is of immense importance to modern society. The most dramatic form, posttraumatic stress disorder (PTSD) is characterised by cognitive impairment, depression, fear, anxiety, and may eventually lead to suicide.

“Understanding the neural mechanisms of PTSD, depression and anxiety disorders could reduce the personal and societal impact through development of more efficient therapies. This project looks at cellular mechanisms involved in experience-induced neuronal plasticity underlying learning, fear and anxiety.”

Dr Blair Grubb, Head of the Department of Cell Physiology and Pharmacology, added: “EU Marie Curie Excellence Grants are extremely competitive and it is a major achievement that Robert Pawlak has made a successful application so early on in his independent research career.

“Robert is one of a number of neuroscientists working in this department and this grant award adds significantly to our research profile in this general area. The proposed research programme will make a major contribution to our understanding of how stress leads to fear and anxiety.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>