Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies potential drug target for Huntington's disease

01.08.2006
Blocking enzyme action could protect against energy depletion in several disorders

An enzyme known to be critical for the repair of damaged cells and the maintenance of cellular energy may be a useful target for new strategies to treat Huntington's disease (HD) and other disorders characterized by low cellular energy levels. In the August issue of Chemistry & Biology, a research team from the MassGeneral Institute for Neurodegenerative Disease (MIND) describes their discovery of a novel inhibitor of Poly (ADP-ribose) polymerase (PARP1) and their findings that PARP1 inhibitors can protect HD-affected cells from damage in laboratory assays.

"While PARP1 is essential for the repair of damaged DNA, we also know that, if overactivated, it can cause cell death by excessive energy depletion," says Aleksey Kazantsev, PhD, director of the MIND High Throughput Drug Screening Laboratory, who led the current study. "It has recently been shown that neurons from patients with Huntington's appear to be energy-deficient, so we hypothesized that modest stresses that would be tolerated by healthy cells could send HD cells below a viable energy threshold and that blocking PARP1 activation could be protective."

To test this hypothesis the MIND researchers first ran a computer search of their small-molecule library for potential novel inhibitors of PARP1, searching for those with structural similarities to known inhibitors. "Safety and efficacy of human drugs depends on many factors, so it's hard to predict which inhibitor would be most effective against a specific disorder. The more diverse novel inhibitors can be identified, the more chances there are of developing safe and effective drugs," Kazantsev explains.

Two candidate molecules were identified as potential PARP1 inhibitors based on their structure, and both of them were confirmed to inhibit the enzyme's activity in an in vitro assay. However, when tested using cultured human and rat cells, only one of the candidate molecules, K245-14, successfully prevented the death of cells in which PARP1 had been overactivated.

The next assays examined whether blocking PARP1 activity with K245-14 could reduce energy depletion in cells with the HD genetic mutation. Using cells from human HD patients and from a mouse model of the disorder, the MIND researchers compared the reactions of HD cells to oxidative stress caused by the application of hydrogen peroxide with the reactions of normal cells. Although all of the cells reacted with a loss of ATP, a key source of cellular energy, the HD cells – which had much lower ATP levels to begin with – were much more vulnerable to stress-induced energy loss. Inhibiting PARP1 by means of K245-14 reduced ATP loss in all tested cells and significantly protected against both energy loss and cell death in the HD cells.

"While we were pleased to observe these predicted protective effects in our experiments, validation of PARP1 as a useful HD drug target will require the testing of inhibitors in animal trials," Kazantsev explains. "The process of identifying the best candidates for trials will be very complex, since any drug treating a central nervous system disorder needs to penetrate the blood-brain barrier. We will be working with our collaborators at the Scripps Research Institute – world leaders in computational chemistry – to conduct a more comprehensive virtual screen and select additional promising candidates for drug development.

"Inhibition of PARP1 activity is thought to be potentially beneficial for treatment of cancer, neurodegenerative conditions such as Parkinson's disease, and over twenty other human disorders," he adds. "We envision broad therapeutic applications for small molecule inhibitors of PARP1." Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>