Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries of Land-use Practices Profoundly Impact Earth System

17.07.2006
In a paper published in the July 2006 issue of Global Change Biology, University of New Hampshire scientists George Hurtt, Steve Frolking, and coauthors show that land-use activities over the last 300 years have substantially altered the land surface in ways that are likely to have had profound effects on the Earth system. Land-use changes have impacted some 42-68 percent of the global land surface, according to the study, which used historical records, satellite data, and computer modeling to reconstruct 216 different global land-use reconstructions to derive the most comprehensive picture to-date.

“This is the first global land-use history description that’s designed specifically to allow global carbon and climate models to assess the impacts of land-use history both on the past and current sources and sinks of carbon and climate,” says Hurtt, assistant professor of natural resources at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and Department of Natural Resources.

According to Hurtt, this global land-use data will allow the next generation of coupled carbon-climate models, known as Earth-system models, to include the most advanced representations of land-use practices yet, including the first mapped estimates of the effects of shifting agriculture, logging, and secondary recovering lands.

“Land-use activities are known to have added large amounts of carbon dioxide to the atmosphere, altered surface reflectivity, and led to habitat alteration and destruction,” says Hurtt. “A major challenge for scientists now is to understand the combined effects of these activities on the dynamics of the carbon-climate system. This study provides a key basis for these assessments.”

Land-use history is critical to understanding the dynamics of the carbon-climate system, not just for technical reasons but also for policy reasons. One of the big policy debates is to what extent carbon sinks in ecosystems should be able to offset carbon emissions. “It is important to know if a carbon sink in an ecosystem today is simply the result of recovery from having been cut down in the past, or a net new storage for carbon over the long term,” says Hurtt.

Moreover, he notes, without this historical analysis of land-use activities, even the most sophisticated models would be inaccurate. “Even if you didn’t care about the past and wanted to focus on future global environmental changes, you would still have to first ‘initialize’ your model to the current state of the planet. Because the current state has been altered by a history of land-use activities over most of the planet, knowledge of historical activities increases the knowledge of the current conditions,” Hurtt says of the work.

Late last year, Hurtt presented the land-use research, now published in Global Change Biology, in a “platform” presentation at the Seventh International Carbon Dioxide Conference held in Boulder, Colorado. Since that time, the presentation has been downloaded more than 1,000 times by individuals interested in the data.

UNH co-authors of the study include Berrien Moore and Matthew Fearon. The study was also co-authored by Steve Pacala, Elena Shevliakova, and Sergey Malysev of Princeton University, and Richard Houghton of the Woods Hole Research Center.

George Hurtt can be reached at (603) 862-4185.

George Hurtt | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>