Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Curtain May be Closing on Scientific Water Controversy

The curtain may be ringing down on a scientific controversy regarding the structure of water which arose two years ago. A new study by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has provided further evidence that the traditional structure of liquid water, in which the average water molecule is hydrogen-bonded to approximately four other water molecules in a tetrahedral arrangement, is correct.

Teresa Head-Gordon and Margaret Johnson, bioengineers with Berkeley Lab’s Physical Biosciences Division, and the University of California Berkeley/San Francisco Joint Graduate Group in Bioengineering, characterized the static structural organization of liquid water by analyzing data which was collected by Head-Gordon’s research group in 2002 using the ultrabright x-ray beams at Berkeley Lab’s Advanced Light Source (ALS). They found that while the “rings and chains” alternative model of liquid water may exist for the briefest of instants, the average structure is that of the familiar tetrahedral network.

“I think that most scientists who work in water, liquids or disordered systems will find our paper very convincing,” said Head-Gordon. “For some, it will be convincing enough so that it should end the controversy.”

Water covers 70 percent of the Earth’s surface and makes up 60 percent of the human body. Despite water’s ubiquitous presence in our lives, it remains a mystery. Whereas most substances contract when they solidify, water expands, making it less dense as a solid than as a liquid. Our lives depend upon liquid water but, given its light molecular weight, water at room temperature should be a gas. The key to understanding the strange but vital properties of liquid water is to fully understand its structure.

A single water molecule is V-shaped, but because the oxygen atom is more electronegative than the hydrogen atoms, the electrons in the molecule tend to gather towards the oxygen end, creating a slightly negative pole there and a slightly positive pole on the hydrogen side. The polarity of each water molecule results in a weak attraction between it and other water molecules, called a hydrogen bond. In the traditional scientific picture of water in the solid ice state, every individual water molecule forms four hydrogen bonds — two that are electron acceptors and two that are electron donors – through which it connects to its nearest neighbors. The result is a network of tetrahedrons. When ice melts, these bonds may become distorted and up to 20-percent of them broken. Despite these thermal distortions, liquid water still retains its tetrahedral network. This tetrahedral structure, coupled with strong hydrogen bonding, has long been thought to be the source of liquid water’s unusual properties.

Two years ago, however, scientists at Stanford University reported a series of experiments, using x-ray absorption spectroscopy and x-ray Raman scattering techniques, that indicated a radically different molecular arrangement for water. They reported that in the liquid state, more than 80 percent of the hydrogen bonds between water molecules were broken. On the average, they found each liquid water molecule formed only two hydrogen bonds — one electron donor and one electron acceptor. From this they concluded that in the liquid state, water molecules form a network of large rings or chains, rather than tetrahedrons.

The data analyzed by Head-Gordon and Johnson was collected through a technique called x-ray scattering, in which a beam of x-rays is sent through a sample and the photons are scattered by the electron density of the sample’s constituent atoms or molecules. The scattering cross-section or intensity of x-rays increases in direct proportion to the number of electrons.

“We used x-ray scattering because the technique enables you to characterize the time-averaged structural organization of atoms or molecules in a liquid or solid,” said Head-Gordon. “In our study, it provided us with information on both the long-range and local order.”

The x-ray scattering experiments analyzed by Head-Gordon and Johnson were conducted Head-Gordon in a collaboration with Greg Hura and Daniela Russo. These experiments were carried out at ALS beamline 7.3.3, an experimental station which provides exceptionally rapid collection of x-ray scattering data with extremely high spatial resolution. Berkeley Lab’s ALS is an electron synchrotron designed to accelerate electrons to energies of nearly 2 billion electron volts (GeV) and extract from them beams of x-ray light that are a hundred million times brighter than those from the best x-ray tubes.

In a paper which is now available on-line in the Proceedings of the National Academy of Sciences (PNAS), Head-Gordon and Johnson describe a model of liquid water they created in which a water molecule’s two hydrogen atoms formed hydrogen-bonded chains. This anti-tetrahedral model was then shown to be inconsistent with the long-range order exhibited in the x-ray scattering data taken at the ALS.

On the other hand, a model of liquid water that formed a tetrahedral structure was shown to agree with the long-range orders in the ALS x-ray scattering data.

“Our best understanding of liquid water at present is that charge asymmetry in water’s electron density arises from symmetry-breaking environments that fluctuate rapidly on the femtosecond timescale,” the authors stated in their PNAS paper. “Although these instantaneous asymmetries may be seen in an x-ray absorption spectroscopy (XAS) experiment, the long timescale (or ensemble) averages inherent in bulk structural experiments such as x-ray scattering tell us that they do not persist. It is important to reconcile the XAS data with the view of water as a tetrahedral hydrogen-bonded liquid.”

This research was supported in part by the U.S. Department of Energy’s Basic Energy Sciences Condensed Phase and Interfacial Molecular Sciences program.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>