Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copying nature could save us energy, study shows

09.05.2006


New technologies that mimic the way insects, plants and animals overcome engineering problems could help reduce our dependence on energy, according to new research published in the Royal Society journal Interface.



When faced with engineering difficulties, such as lifting a load or coping with extremes of heat, up to 70 per cent of man-made technologies manipulate energy, often increasing the amount used, in order to resolve the problem.

However, new research which has compared how nature and man-made technologies overcome similar problems has shown that only 5 per cent of natural ‘machines’ rely on energy in the same way.


Instead, insects, plants, birds and mammals rely on the structure and organisation of their body parts and behaviour; the solutions to problems are already built in.

“An example might be a hammer,” said Professor Julian Vincent from the University of Bath who led the research .

“A man-made hammer has a very heavy head, so that it is heavy to carry around and lift but can do a lot of work with one hit. It relies on inertia.

“But the woodpecker’s hammer, its head, relies on speed. It is very light to carry around, and functions rather like a whip, with the heavier body moving a small amount, and the lighter head, on its long neck, moving much faster.

“They can each deliver the same amount of impact energy, but they do it in a very different way.”

Although mankind has looked to nature for inspiration for generations, ‘biomimetic’ devices are a relatively recent phenomenon. The stable wing in aeroplanes, Velcro and self-cleaning paint are all simple devices based on natural inspiration.

The Centre for Biomimetic and Natural Technologies at the University of Bath is helping extend this principle to more advanced engineering challenges.

Researchers are currently looking at the desert cockroach (to develop a new kind of dehumidifier technology), insect sense organs (for structural health monitoring) and the egg-laying organ of a wood-wasp (for a new type of steerable endoscope).

“Evolution has sculpted animals, insects and plants to produce incredibly efficient machines that carry out a range of impressive engineering feats,” said Professor Vincent, Director of the Centre.

“From the way desert cockroaches gather water to the way wasps bore a hole into a tree, nature has developed a myriad of ways of solving difficult problems.

“By better understanding the way in which biology defines and solves technical problems, we can develop new approaches that could significantly reduce our dependence on energy.

“It is likely that we have similar technologies to nature – it’s just that we use them in a particularly unintelligent way.

“Exactly how much energy we could save is not yet clear, but our research suggests that the potential is certainly there to be exploited.”

The researchers used a form of the Russian analytical system TRIZ to compare how man-made technologies and natural ‘machines’ overcome similar engineering problems.

The analysis showed that there is only a 12 per cent similarity in the way biology and technology solves the problems they are faced with.

“Whilst we have been quick to see the potential for developing new kinds of products from nature, it is only now that we can see the potential for making energy savings too,” said Professor Vincent.

“Given the growing demands for improving our energy-efficiency and reducing the amount of pollution we produce, biomimetics offers a new area of study which could reap strong rewards for the future.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/biomimeticsenergy090506.html

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>