Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-Made Climate Change

05.05.2006


New study identifies human contribution to atmosphere circulation changes


Illustrating the Walker circulation. Changes under warming are exaggerated for emphasis. Illustration credit: Gabriel A. Vecchi, NOAA Geophysical Fluid Dynamics Laboratory.



A new study published in this week’s issue of Nature is the first to show that human activity is altering the circulation of the tropical atmosphere and ocean through global warming.

Scientists widely agree that the climate has warmed over the past century and that human activities, such as burning fossil fuels, have significantly contributed to this global warming. This study tapped historical records that date back to the mid-19th century as well as simple theory and state-of-the-art computer model simulations to detect and attribute these climate changes. The conclusion was that the principal loop of winds that drives climate and ocean behavior across the tropical Pacific is slowing down and causing the climate to drift towards a more El Niño-like state. This could have important implications for the frequency and intensity of future El Niño events and biological productivity in tropical oceans.


In their paper, titled “Weakening of Tropical Pacific Atmospheric Circulation Due to Anthropogenic Forcing,” the researchers identify a 3.5 percent weakening that has occurred since the mid-1800s in this air system known as the Walker circulation. They also cite evidence that it may weaken another 10 percent by 2100.

“There is an indication that the slowdown may be intensifying,” said Dr. Gabriel A. Vecchi, lead author from NOAA’s Geophysical Fluid Dynamics Laboratory. “The trend since World War II is larger than that over the entire record, and the long-term trend is larger than what is expected from natural climate variability. This is why we employed a very long observational record — to be able to accurately detect and attribute these changes.”

The study does send mixed signals on the future of El Niño/La Niña. “While we can’t predict with certainty how the frequency or intensity of El Niño-related weather events will respond to global warming, our study does suggest that the climate as a whole is slowly moving towards a more El Niño-like state,” said Dr. Brian Soden, a co-author from the University of Miami Rosenstiel School of Marine and Atmospheric Science. “Additionally, this slowdown has modified the structure and circulation of the tropical Pacific Ocean, which is a source of nutrients to one of the most biologically productive regions of the world’s oceans. This has implications to the well-being and proliferation of marine life in tropical oceans.”

“The Walker circulation is fundamental to climate throughout the globe: its variations are closely linked to those of the El Niño/Southern Oscillation and monsoonal circulations over adjacent continents, and variations in its intensity and structure affect climate all over the globe,” wrote Vecchi, Soden, and their co-authors Andrew T. Wittenberg, Isaac M. Held, Ants Leetmaa, and Matthew J. Harrison, also from the NOAA Geophysical Fluid Dynamics Laboratory in Princeton, N.J. The Walker circulation spans almost half the circumference of the Earth.

This study found a weakening of the Walker circulation in historical observations that corresponds closely to what theoretical and modeling studies expect from an increase in greenhouse gases. This agreement provides increased confidence in model projections of future climate change in the tropics.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world’s premier marine and atmospheric research institutions.

Ivy F. Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>