Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levee modeling study to provide technical data for rebuilding New Orleans

22.02.2006


To provide essential data for the rebuilding of the ravaged levees in New Orleans, engineers from Rensselaer Polytechnic Institute will be studying small-scale models of sections of the flood-protection system. The researchers will replicate conditions during Hurricane Katrina by subjecting the models to flood loads, supplying important information to help the U.S. Army Corps of Engineers prepare the city for next hurricane season and beyond.



The researchers will build and test models of typical levee sections from several locations in New Orleans, including the 17th Street Canal and the London Avenue Canal.

As part of the Corps’ Hurricane Katrina Interagency Performance Evaluation Task Force (IPET), the project will take advantage of the facilities at Rensselaer’s Geotechnical Centrifuge Research Center, which is partially funded through the National Science Foundation (NSF). Two Rensselaer engineers will be leading the effort: Tarek Abdoun, principal investigator and associate professor of civil and environmental engineering; and Thomas Zimmie, professor and acting chair of civil and environmental engineering.


"In addition to studying the damaged structures in the aftermath of the hurricane, we also can model the conditions that were occurring during the storm," Abdoun says. "This will provide decision makers with the best scientific information available as they proceed with the rebuilding process."

Zimmie was a member of the NSF-funded team that investigated levee failures in the immediate wake of the storm. In the team’s preliminary report, researchers noted that there was not one simple answer as to why the levees failed. The field observations suggested a number of possible causes, according to Zimmie.

At the 17th Street Canal, the foundation is a complex combination of peat and weak clays, which may have caused this levee’s failure, Zimmie says. Likewise, at the London Avenue Canal, a section of fine sand under the levee might have been the culprit.

"Until all the physical evidence has been analyzed, we will not have a complete picture of what happened," Zimmie says. "The information we collect from these centrifuge models will provide some hard data to back up our preliminary observations, helping us to better understand how levees respond under extreme conditions."

Rensselaer’s 150 g-ton centrifuge, which is one of only four of its kind in the country, has a large mechanical arm that can swing model structures around at 250 miles per hour, exerting forces real structures would face only at catastrophic moments.

"Suppose we want to test a levee that is 100 feet high," Abdoun says. "We can build a model that is only one foot high and then spin it around at 100 g, making it equivalent to a 100-foot-high levee. We can simulate all kinds of structures under just about any failure condition -- earthquakes, explosions, landslides -- and we can do it relatively fast at a very reasonable cost."

A system of advanced sensors will measure the response of the levees in both the vertical and horizontal planes, and cameras will be mounted around the models for visual observations.

The research at Rensselaer will be supplemented by modeling studies at the Army’s Centrifuge Research Center in Vicksburg, Miss. The IPET final report, which is scheduled to be completed by June 1, will be validated by an external review panel from the American Society of Civil Engineers (ASCE). The National Academies has assembled a multidisciplinary, independent panel of acknowledged experts to review and synthesize the IPET and ASCE efforts. The National Academies panel will report its findings and recommendations directly to the Assistant Secretary of the Army for Civil Works in the summer of 2006.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>