Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First wolverine radio-collared in Pacific Northwest

20.02.2006


First scientific study of wolverines ever conducted in the Pacific Northwest

The closest encounter most wildlife biologists have with wolverines in the Pacific Northwest is seeing a set of the animal’s tracks in the snow. But wildlife biologist Keith Aubry recently got the call he had eagerly anticipated for several weeks.

A member of his research team called from a site high in the northern Cascade Range of Washington to report that a wolverine had just been captured. Aubry, a carnivore expert and research wildlife biologist at the U.S. Forest Service Pacific Northwest Research Station in Olympia, Wash., and Jeff Copeland, a wolverine researcher with the Rocky Mountain Research Station in Missoula, Mont., rushed to the Methow Valley to fit the young female wolverine with a satellite radio collar to initiate the first scientific study of wolverines ever conducted in the Pacific Northwest.



Other members of the interagency team, including wildlife biologists John Rohrer of the Okanogan-Wenatchee National Forest and Scott Fitkin of the Washington Department of Fish and Wildlife (WDFW), traveled by snowmobile to a remote location south of the Pasayten Wilderness in Okanogan County. After immobilizing the wolverine with a sedative, Aubry and his team quickly went to work to evaluate the health of the animal, take measurements and tissue samples for genetic analyses, and install a radio collar to report her movements to Aubry via satellite for the next 18 months. "With this technology, we can now begin to gather reliable information on the movements, home range, and habitat of wolverines in the Pacific Northwest," said Aubry.

The wolverine is a Federal Sensitive Species and a Washington State Candidate Species for protective listing. Since the mid-1990s, biologists have documented the presence of wolverines in north-central Washington via aerial surveys, remote cameras, and winter tracking.

"What we learn about wolverines from this effort will help us determine the species’ status and management needs," said Rohrer, who is the project field coordinator for the Methow Valley Ranger District in Winthrop.

The capture is the culmination of several years of survey work in north-central Washington to document wolverine presence to begin to understand their habitat needs. "We know so little about these rarely seen animals that this is an exciting opportunity to learn more about their general ecology in the north Cascades," said Fitkin of WDFW.

Wolverines (Gulo gulo) weigh about 20 to 40 pounds, depending on sex and age, and are the largest land-based member of the mustelid family that includes weasels, badgers, and otters. They are primarily found in boreal forest and tundra habitats in the far north, but also occur in mountainous terrain at the southern end of their current range in the Cascades and Northern Rockies. They prey on everything from moose to mice, and often rely heavily on scavenging for food during winter.

"The young female wolverine we collared weighed about 19 pounds, and was in excellent health and condition. She hasn’t had kits yet, and is probably just a year old," said Aubry. "It’s likely that her parents and possibly siblings are in the same general area, so chances are good that we will collar additional individuals in the traps we’ve set."

Rohrer and Fitkin will continue to monitor three wolverine traps placed before snowfall in locations where wolverines had previously been detected. The log-cabin-style box traps have been set since mid-January, and are checked every day. They are baited with carrion and provide captured animals with a secure and comfortable space until they are released.

A key reason for conducting this research is the need to understand the wolverine’s habitat requirements in the Northwest and maintain the habitat without conflicting with other land uses. With help from satellites 600 miles overhead, Aubry hopes to follow wolverines in the north Cascades for at least 2 more years.

Sherri Richardson Dodge | EurekAlert!
Further information:
http://www.fs.fed.us/pnw/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>