Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark FSU study of hepatitis C virus solves mystery that has stymied quest for cure

08.02.2006


The hepatitis C virus (HCV) infects more than 170 million people worldwide and leads to both acute and chronic liver diseases. Since its discovery several decades ago, the insidious human pathogen has stymied the quest for anti-viral therapies by refusing to reproduce in test tubes for more than a few hours or days, denying scientists an efficient virus production and infection system for experimental research.



Now, in a landmark study by Florida State University biologists that could bolster the development of anti-viral therapies for HCV –– as well as for related RNA viruses such as West Nile and influenza –– Assistant Professor Hengli Tang and doctoral student/co-author Heather B. Nelson have discovered the molecular mechanism that inhibits HCV replication in vitro after its host cells become crowded and stopped dividing.

What’s more, their groundbreaking discovery came about as a result of the new test they developed that can quickly and easily monitor HCV replication in the laboratory.


Finally, after Tang and Nelson uncovered the reason for suppression of the virus in cell culture –– in a nutshell: not enough nucleotide molecules, the building blocks of HCV –– they then adapted an existing cell technology to remedy the problem right in the test tube.

The Tang-Nelson study and a description of the innovative technologies they devised to enable and track it will appear in the Feb. 8 edition of the Journal of Virology.

"Our findings could prove critical to research on HCV’s complex virus-host cell interactions and lead to better, targeted treatments," Tang said.

"Currently, any nucleotide starvation therapies, used primarily to treat cancer, can inhibit replication by depriving viral agents of their molecular building blocks. However, those therapies may impact healthy cells, as well, causing undesired side effects."

In the human liver, the parasitic HCV makes copies of its genetic material by hijacking nucleotides –– the little molecules produced by its dividing host cells. It is only in the liver that pools of nucleotides remain available to HCV in sufficient supply after the host cells reached confluence (stop dividing).

Not so in test tubes, say the FSU researchers.

To address the shortage of HCV building blocks in vitro, their unique adaptation of an existing cell technology enabled the introduction of nucleoside molecules to a culture of liver cancer cells. The nucleosides then converted to the essential nucleotide molecules that Tang calls the missing link. In turn, the nucleotides generated in vitro replication of infectious HCV particles that continued even after host cell confluence –– as it does in the liver.

That’s not all. "Our new cell line also allows us to rapidly identify and isolate drug-resistant HCV mutants in vitro and to screen for anti-viral drug candidates," Tang said. "This will help researchers better study the mechanism of drug resistance, a big problem with this virus and others such as HIV (human immunodeficiency virus) that mutate quickly."

Underpinning everything, Tang says, is their novel, easy-to-use assay. It can track mutant strains of HCV in a week or less while other assays take weeks or months.

"Our assay, for which FSU has filed a provisional patent application, employs a new reporter cell line, which means the cells give out a detectable signal when certain events happen inside them," said Tang. "In this case, they emit a green fluorescence whenever HVC is replicating. The fluorescence is tracked in the cell culture through a technique known as flow cytometry, which employs a machine equipped with a laser and lights that follows the green to find the virus."

Between earning his Ph.D. at the University of California-San Diego in 1998 and joining FSU’s biological science faculty in 2004, Tang served as a lead researcher in an industry setting, seeking targeted anti-viral therapies primarily for HIV.

"I find it particularly rewarding to play a part in research that may actually help somebody soon," he said.

Hengli Tang | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>