Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of the nervous system in regulating stem cells discovered

27.01.2006


Study led by Mount Sinai School of Medicine may provide new hope for cancer patients and others with compromised immune systems



New study by Mount Sinai researchers may lead to improved stem cell therapies for patients with compromised immune systems due to intensive cancer therapy or autoimmune disease. The study is published in this week’s issue of Cell.

A group, led by Paul Frenette, Associate Professor of Medicine at Mount Sinai School of Medicine, found that the sympathetic--or "fight or flight" branch--of the nervous system plays a critical role in coaxing bone marrow stem cells into the bloodstream. Bone marrow cells known as hematopoietic stem cells are the source for blood and immune cells.


Hematopoietic stem cell transplants are now routinely used to restore the immune systems of patients after intensive cancer therapy and for treatment of other disorders of the blood and immune system, according to the National Institutes of Health. While physicians once retrieved the stem cells directly from bone marrow, doctors now prefer to harvest donor cells that have been mobilized into circulating blood.

In normal individuals, the continuous trafficking of the stem cells between the bone marrow and blood fills empty or damaged niches and contributes to the maintenance of normal blood cell formation, according to the researchers. Although it has been known for many years that the mobilization of hematopoietic stem cells can be enhanced by multiple chemicals, the mechanisms that regulate this critical process are largely unknown, they said.

One factor in particular, known as hematopoietic cytokine granulocyte-colony stimulating factor (G-CSF), is widely used clinically to elicit hematopoietic stem cell mobilization for life-saving bone marrow transplantation, said Dr. Frenette.

Several years ago, Dr. Frenette’s group reported that a second compound, fucoidan, which is synthesized by certain seaweeds, could also spur the stem cells into action. The group speculated that the seaweed derivative might work by imitating a similar compound, called sulfatide, naturally present in mammalian tissues.

To test the idea, the researchers examined mice lacking the enzyme responsible for making sulfatide.

"Lo and behold, mice lacking the enzyme Cgt did not mobilize hematopoietic stem cells at all when treated with the stimulating factor G-CSF or fucoidan," Dr. Frenette said. "You don’t get such dramatic results that often in science. We knew we had stumbled onto something important."

To their surprise, further study failed to connect the stalled stem cell movement to sulfatide. Rather, they found, the deficiency stemmed from a defect in the transmission of signals sent via the sympathetic nervous system. The products of Cgt contribute to the myelin sheath that coats and protects nerve cells, they explained.

Mice with other nervous system defects also exhibited a failure to mobilize bone marrow stem cells, they found. Moreover, drugs that stimulate the sympathetic nervous system restored stem cell movement into the blood stream in mice with an impaired ability to respond to norepinephrine, the signature chemical messenger of the sympathetic system.

"The nervous system plays an important role in producing signals that maintain the stem cell niche and retention in bone marrow," Dr. Frenette said.

"The new findings add another dimension of complexity to the processes involved in stem cell maintenance and mobilization and emphasize the interrelationships among the nervous, skeletal and hematopoietic systems," he added. "They all have to work together – to talk to each other – to produce blood and maintain stem cells."

The results suggest that differences in the sympathetic nervous systems of stem cell donors may explain "conspicuous variability" in the efficiency with which they mobilize hematopoietic cells into the bloodstream, the researchers said. Furthermore, drugs that alter the signals transmitted by the sympathetic nervous system to the stem cells in bone may offer a novel strategy to improve stem cell harvests for stem cell-based therapeutics, they added.

The unexpected findings by Frenette and his colleagues further "suggest that the pharmacological manipulation of the sympathetic nervous system may be a means of therapeutically targeting the stem cells in their niche for the purpose of either mobilization or, conversely, attracting stem cells to the niche following transplantation," they added.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>