Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution study tightens human-chimp connection

24.01.2006


Study also finds human evolution slower than apes



Scientists at the Georgia Institute of Technology have found genetic evidence that seems to support a controversial hypothesis that humans and chimpanzees may be more closely related to each other than chimps are to the other two species of great apes – gorillas and orangutans. They also found that humans evolved at a slower rate than apes.
Appearing in the January 23, 2006 issue of the Proceedings of the National Academy of Sciences, biologist Soojin Yi reports that the rate of human and chimp molecular evolution – changes that occur over time at the genetic level – is much slower than that of gorillas and orangutans, with the evolution of humans being the slowest of all.

As species branch off along evolutionary lines, important genetic traits, like the rate of molecular evolution also begin to diverge. They found that the speed of this molecular clock in humans and chimps is so similar, it suggests that certain human-specific traits, like generation time, began to evolve one million years ago - very recently in terms of evolution. The amount of time between parents and offspring is longer in humans than apes. Since a long generation time is closely correlated with the evolution of a big brain, it also suggests that developmental changes specific to humans may also have evolved very recently.



In a large-scale genetic analysis of approximately 63 million base pairs of DNA, the scientists studied the rate at which the base pairs that define the differences between species were incorrectly paired due to errors in the genetic encoding process, an occurrence known as substitution. "For the first time, we’ve shown that the difference in the rate of molecular evolution between humans and chimpanzees is very small, but significant, suggesting that the evolution of human-specific life history traits is very recent," said Yi.

Most biologists believe that humans and chimpanzees had a common ancestor before the evolutionary lines diverged about 5-7 million years ago. According to the analysis, one million years ago the molecular clock in the line that became modern humans began to slow down. Today, the human molecular clock is only 3 percent slower than the molecular clock of the chimp, while it has slowed down 11 percent from the gorilla’s molecular clock.

This slow down in the molecular clock correlates with a longer generation time because substitutions need to be passed to the next generation in order to have any lasting effect on the species,

"A long generation time is an important trait that separates humans from their evolutionary relatives," said Navin Elango, graduate student in the School of Biology and first author of the research paper. "We used to think that apes shared one generation time, but that’s not true. There’s a lot more variation. In our study, we found that the chimpanzee’s generation time is a lot closer to that of humans than it is to other apes."

The results also confirm that there is very little difference in the alignable regions of the human and chimp genomes. Taken together, the study’s findings suggest that humans and chimps are more closely related to each other than the chimps are to the other great apes.

"I think we can say that this study provides further support for the hypothesis that humans and chimpanzees should be in one genus, rather than two different genus’ because we not only share extremely similar genomes, we share similar generation time," said Yi.

Even though the 63 million base pairs they studied is a large sample, it’s still a small part of the genome, Yi said. "If we look at the whole genome, maybe it’s a different story, but there is evidence in the fossil record that this change in generation time occurred very recently, so the genetic evidence and the fossil data seem to fit together quite well so far."

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>