Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Utah researchers confirm chromosome may harbor autism gene

18.01.2006


Data strikingly similar to Finnish studies



Using technology that allows DNA from thousands of genes to be collected and surveyed on a 3 x 1½-inch chip, University of Utah medical researchers have confirmed that a region on a single chromosome probably harbors a gene that causes autism. The researchers at the U School of Medicine made the finding by tracing variations in the DNA of an extended Utah family that has a high occurrence of the disorder and whose members are descended from one couple.

As part of the study, the researchers also ruled out one gene that appeared to be a good candidate for being linked to autism. They’re now looking at other genes for a connection to the disorder.


Published in Human Heredity online, the study is part of the Utah Autism Research Project. The researchers are interested in finding more families with a history of autism to join the study.

The just-published research confirms Finnish studies of families that linked autism to the same region on chromosome 3, according to principal author Hilary Coon, Ph.D., research associate professor of psychiatry. In fact, the results of the U of U research were surprisingly similar to the Finnish studies, Coon said.

"It was remarkable to confirm the Finnish studies," she said. "Our results were so close to their evidence, we thought it was important."

Autism is a behavioral disorder that strikes before age 3 and is characterized by impaired ability in social interactions and communication. Those with autism also display repetitive behaviors and interests.

The study involved 31 members of a family of Northern European ancestry, seven of whom have autism or an autism-related disorder. The family members are part of the Utah Population Database, a computerized set of the genealogies of 170,000 Utah families comprising 1.6 million people. Information on some families goes back to the state’s pioneer founders.

The researchers used a gene chip similar to a microarray to search for genetic markers of autism.

They used a coated glass chip from Affymetrix, Inc. This chip has 10,000 short segments of DNA with known gene sequence variations, called single nucleotide polymorphisms (SNPs), attached to 3/8 by 3/8-inch area. The DNA strands of the family members were broken up and then bonded to the DNA on the chip, allowing researchers to compare the variations in the SNPs of the different DNA on an extremely fine scale.

The chance of the same variants of SNPs in a particular region on a chromosome being passed through several generations from a founding couple to multiple affected family members is slight. When such identical blocks of SNPs are found, the chromosomal region often is a good candidate for being linked to a disease.

Other studies, including the Finnish ones, have found a high degree of evidence linking chromosome 3 to autism, so Coon and the other U researchers began their search on that chromosome. The first region of the chromosome they looked at contained 106 SNPs, 70 of which strongly indicated a gene in that region being linked to autism.

One gene, FXR1, appeared to be a likely candidate for a link to autism. FXR1 is similar to the X-chromosome Fragile X gene, FMR1. Mutations in FMR1 cause Fragile X Syndrome, an inherited condition that can cause mental impairments ranging from learning disabilities to severe cognitive problems. Fragile X syndrome has been shown to overlap with autism, and because FXR1 is similar to the gene that causes the syndrome, U researchers suspected FXR1 might be linked to autism. But after analyzing the entire coding sequence of FXR1, the researchers found no alterations in the gene likely to contribute to autism.

Based on statistical evidence, they’re now looking at other genes. But evidence that a gene on a particular region of chromosome 3 is linked to the disorder doesn’t preclude other genes from being a cause of autism, according to Coon. All in all, the researchers have a daunting search ahead of them.

"We’re just looking for the needle in the haystack," Coon said.

Along with the original family, the U researchers are studying two more families with autism in some members, and they’d like to find others in which the disorder occurs. Large and small families with individual or multiple cases of autism are welcome to join. Those interested can call (801) 585-9098.

Other authors of the study are: Nori Matsunami, Jeff Stevens, Judith S. Miller, Ph.D, assistant professor of psychiatry, and Carmen Pingree, all with the Neurodevelopmental Genetics Project in the Department of Psychiatry; Nicola J. Camp, Ph.D., assistant professor of medical informatics; Alun Thomas, Ph.D., professor of medical informatics; Janet E. Lainhart, M.D., associate professor of psychiatry; Mark F. Leppert, professor and chair of Human Genetics; and William M. McMahon, M.D., professor of psychiatry and principal investigator of the Utah Autism Research Project.

Phil Sahm | EurekAlert!
Further information:
http://www.hsc.utah.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>