Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links Alzheimer’s disease to abnormal cell division

18.01.2006


A new study in mice suggests that Alzheimer’s disease (AD) may be triggered when adult neurons try to divide. The finding helps researchers understand what goes wrong in the disease and may lead to new ways of treating it. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, and appears in the January 18, 2006 issue of The Journal of Neuroscience.*



For unknown reasons, nerve cells (neurons) affected by AD and many other neurodegenerative diseases often start to divide before they die. The new study shows that, in animal models of AD, this abnormal cell division starts long before amyloid plaques or other markers of the disease appear. Cell division occurs through a process called the cell cycle. "If you could stop cell cycling, you might be able to stop neurons from dying prematurely. This could be a fresh approach to therapy for Alzheimer’s and other diseases, including stroke, amyotrophic lateral sclerosis [also known as Lou Gehrig’s disease], and HIV dementia," says Karl Herrup, Ph.D., of Case Western Reserve University in Cleveland, who led the study.

The researchers compared the brains of three different mouse models of AD to brains from normal mice, looking specifically for markers of cell cycling. They found that, in the AD mouse models, cell cycle-related proteins appeared in neurons 6 months before the first amyloid plaques or disease-related immune reactions developed in the brain. Many of the neurons also had increased numbers of chromosomes, which is typical of cells that have begun to divide. These changes were not seen in normal mice. The regions of the brain most affected by the neuronal cell cycling were the cortex and the hippocampus – the same regions most affected in AD. The cortex is important for thought and reasoning, while the hippocampus plays a key role in learning and memory. Some parts of the brainstem also showed evidence of cell cycling.


While the cell cycling appeared to be necessary for neurons to die, it was not an immediate cause of cell death in the mouse models of AD. Instead, the affected neurons appeared to live for many months in a near-functional state, with the mice showing only mild behavioral changes during that time. This suggests that another type of cellular problem, still unidentified, must damage the neurons in order for them to die.

The findings shed new light on the theory that the accumulation of amyloid beta in the brain causes the neuron death in AD. Because the abnormal cell cycling begins months before the formation of amyloid plaques, it is unlikely that the plaques themselves trigger the disease process. However, tiny clumps made up of several amyloid beta molecules (called micro-molecular aggregates) form before the plaques and may trigger the disease. Since the three mouse models tested in this study all had mutations in the gene that codes for amyloid precursor protein, the similarity between affected brain regions in these mice and in people with AD also supports the amyloid hypothesis.

While previous studies have linked AD to abnormal cell cycling, this is the first study to examine the link using standard mouse models of AD. The results indicate that the mice, which do not develop neurofibrillary tangles or the severe behavioral symptoms of AD, are accurate models of the early cellular processes that lead to the disease. "The cell cycle markers mimic the human situation rather well," says Dr. Herrup. "This opens a range of new experimental possibilities using the cell cycle events as indicators of neuronal distress."

Dr. Herrup and his colleagues are now trying to determine if feeding the mouse models the drug ibuprofen can stop abnormal cell cycling in neurons and halt neurodegeneration. Ibuprofen is an anti-inflammatory drug that reduces production of amyloid beta, and some studies have suggested that it may reduce the risk of AD. The researchers are also planning additional studies to identify why neurons start to divide when they are diseased and why entering the cell cycle appears to trigger cell death.

Natalie Frazin | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>