Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale study explains complex infection fighting mechanism

11.01.2006


Yale School of Medicine researchers report in Nature Immunology how infection fighting mechanisms in the body can distinguish between a virus and the healthy body, shedding new light on auto immune disorders.



The infection fighters in question, toll-like receptors (TLRs), function by recognizing viral, bacterial or fungal pathogens and then sending signals throughout the immune system announcing that an infection has occurred.

Viruses change features to avoid being recognized, thereby triggering the immune response. But TLRs recognize the highly conserved features of pathogens, features that are often difficult to change without affecting the punch of the pathogen, said lead author of the study, Gregory Barton of the University of California at Berkeley who performed the research while in the Section of Immunobiology at Yale School of Medicine.


He said that one exception to the general view of how TLRs work is the way TLRs recognize viruses since viruses lack the unique features of bacterial or fungal pathogens. Because of this, the immune system has had to find other ways to recognize viral infection.

"In particular, the DNA or RNA that comprise viral genomes can stimulate certain TLRs," Barton said. "This strategy comes at an enormous cost. By targeting the DNA or RNA of viruses, the immune system runs the risk of accidentally recognizing its own DNA and RNA as foreign and inappropriately making an immune response against itself. This autoimmune condition is called systemic lupus erythematosus or SLE, and can be devastating for those unfortunate enough to suffer from it."

The work of senior author Ruslan Medzhitov, professor of immunobiology, and his colleagues, has focused on trying to understand how recognition of a body’s own DNA is avoided by those TLRs involved in viral nucleic acid recognition.

"We have known for some time that those TLRs are sequestered in specialized compartments within cells," Barton said. "The significance of this localization, however, was unclear. We have now shown that the localization is, in fact, a key factor for the avoidance of self DNA recognition as well as for the optimal recognition of viral DNA."

He said the research group was able to construct a modified version of one of the TLRs, moving it from the specialized internal compartment within the cell to the cell surface. This engineered version of the TLR had enhanced recognition of self DNA, yet poor recognition of viral DNA, proving that isolation of certain TLRs within these specialized intracellular compartments is an important checkpoint in maintaining the balance between viral and self nucleic acid recognition.

"This work has potential implications for our understanding of the molecular basis of lupus (SLE)," Barton said. "It is possible that certain mutations in TLRs will affect their localization within the cell and give them better access to self nucleic acid. Understanding how this balance is maintained and how it can go wrong is an important step in the fight against autoimmune disorders."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht New study first to predict which oil and gas wells are leaking methane
21.12.2018 | University of Vermont

nachricht Droughts boost emissions as hydropower dries up
21.12.2018 | Stanford's School of Earth, Energy & Environmental Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>