Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Logging may hinder forest regeneration, increase fire risk

06.01.2006


A new study done in the area burned in the catastrophic Biscuit Fire in Southwestern Oregon in 2002 found that allowing trees to naturally regenerate works about as well or better than logging and replanting, and that undisturbed areas may be at lower fire risk in the future.



The research will be published Friday in Sciencexpress and later presented in the journal Science, by scientists from Oregon State University and the Institute of Pacific Islands Forestry in Hawaii. It provides some of the first actual data about forest regeneration in this vast, burned area.

Even following a high severity fire such as this, which covered more than 450,000 acres and was the largest in Oregon history, the natural conifer regeneration on study sites was about 300 seedlings per acre, and 80 percent Douglas fir. However, logging reduced the regeneration by 71 percent, and would necessitate manual planting to restore seedling levels that otherwise would have occurred naturally.


In addition, the study suggested that logging, by itself, would actually increase the levels of material that could fuel another fire in the near future, because of the "pulse" of easily-burned fine fuels and waste wood left behind on the forest floor after trees are felled and processed. Other fuel reduction approaches besides logging would still be needed, the researchers said, with additional expense.

"Surprisingly, it appears that after even the most severe fires, the forest is naturally very resilient, more than it’s often given credit for," said Dan Donato, a graduate student in the Department of Forest Science at OSU and lead author on the study.

"And if another of our goals is to reduce the risk of early re-burn, the best strategy may be to leave dead trees standing," he said. "In the absence of post-fire logging, we would expect the fuels to fall to the ground over some protracted period, as opposed to the single pulse of high fire risk we saw after logging alone."

This research was focused on regeneration potential after fire, effects of post-fire logging on regeneration, and fire risks. It did not consider the economics of salvage logging. It also did not address the long-term fate of conifer seedlings in competition with shrubs and hardwoods – although early initial regeneration is one key to winning that battle. Continued research to monitor seedling survival and forest recovery is necessary, the scientists said.

Also of note, the scientists said, is that the years immediately following the Biscuit Fire included a good "seed year" for surviving trees and favorable soil moisture conditions, which is a concern in this comparatively dry region of southwest Oregon, where reforestation has traditionally been very difficult.

"What this study does make clear is that natural regeneration does not necessarily fail to achieve our goals for conifer establishment," said Beverly Law, an OSU associate professor of forest science. "Strong numbers of seedlings regenerated naturally, and they have a good foothold. So far, so good. Only time will tell how the conifers will compete with shrubs in the long run."

One of the consequences of logging, the scientists said, is that the use of heavy equipment, log skidding, soil compaction and burial of seedlings by excess woody debris took a heavy toll on naturally regenerated seedlings, which in this case began taking root almost immediately after the fire. The logging of dead, burned trees might add more debris than logging of green trees, researchers said, because without foliage to catch the wind, burned trees often fall more quickly and shatter more readily than living trees.

When left to natural regeneration, the trees that did not die acted as a seed source for fairly wide areas around them, researchers say. And contrary to some assumptions, even severe forest fires rarely kill every tree – rather, they usually move through an area in a mosaic of burned trees and some stands left living.

Fire risk is a different issue, the report said.

"Logging has sometimes been cited as a way to reduce fuels that could feed future fires," said John Campbell, a faculty research associate in the Department of Forest Science. "But not everything leaves on the log truck. We found that the process of logging in this type of situation actually produces a large amount of fine fuels on the ground that, unless removed, could increase fire risk, not decrease it." Leaving that material up in the air on dead trees that will eventually fall, years or decades in the future, is actually more likely to reduce fire risks during the early stages of forest development, the study said. Mechanical fuel removal can work, the report said, but is often precluded by its expense. After logging, options are to leave the fuels and live with high fire risk, or to treat them, generally by prescribed burning, which can lead to additional impacts such as further soil damage and seedling mortality.

In this study, researchers used a comparison of logged and unlogged plots across the fire area, sampling them before and after logging activities. The study concluded that even if logged areas were replanted at prescribed levels, there would be no net gain over natural, early conifer establishment. But the logging activities did cause a significant increase in both fine and coarse woody fuel loads, elevating the short term fire risk, the report said.

"Postfire logging may conflict with ecosystem recovery goals," the authors concluded.

Dan Donato | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>