Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD team creates model for genetic brain syndrome

05.01.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine took a step closer to understanding the basis of a severe epilepsy and mental retardation syndrome with work published in the January 5, 2006 issue of the journal Neuron.
Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, and his research team have developed a mouse model for a severe brain disorder in newborn children called lissencephaly, or "smooth brain."

"This is the first study to establish a link between the human and mouse disease that clearly shows we can model this condition in the lab," said Gleeson. "This study will allow us to begin to better understand what goes wrong in lissencephaly, and to use this mouse to figure out why children with this disease develop seizures and mental retardation."


It had been known that children with a genetic alteration in a gene called doublecortin suffer from epilepsy and mental retardation due to a defect in how the neuronal stem cells are positioned within the cerebral cortex. In the normal brain, neurons are born – adjacent to fluid-filled cavities deep within the developing brain – during the third and fourth month of gestation. Then they must migrate to reach their proper position within the six-layered cortex. When this migration is defective and neurons stop short of their proper destination, there is an absence of the normal grooves and ridges that characterize the brain in high mammals, including mice. Only four, instead of six, layers of cortex are formed, and the cerebral cortex of these patients lacks most or all of the hills and valleys of the normal human brain.

Gleeson and colleagues previously showed that mutations in the doublecortin gene account for nearly 20 percent of lissencephaly cases in humans. However, previous research by his lab and others yielded conflicting results about the nature of this condition, because researchers had failed to convincingly show in laboratory mice that a similar condition resulted from genetic alteration of the doublecortin gene.

In this study, UCSD team removed not one, but two genes from the mouse. This included both the doublecortin gene and a closely related gene with a similar structure known as doublecortin-like kinase. When both genes were removed, the laboratory mice showed features similar to those expected in human lissencephaly. Neuronal stem cells failed to send progeny cells to the correct position within the brain. As a result, the cerebral cortex did not show the normal six-layered structure characteristic of the mammalian brain.

"This study shows that brain development in mice is less susceptible to genetic deletions than in humans, because there is a redundant mechanism that fills in when just one gene is missing" said Gleeson. "The human brain is one of the most complex structures we know of, and evolution has been working hard to make the human brain over the past million years. It is not surprising that the human brain is more susceptible to genetic variation than the brain of a laboratory mouse."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>