Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study fishes out new role for prostaglandins

02.01.2006


Prostaglandins – the fat-derived compounds linked to pain, inflammation, reproduction and cancer – can add another biological function to their extensive catalog.



A new study by Vanderbilt researchers reveals that prostaglandins help choreograph the intricate cell movements during early embryonic development in zebrafish, highlighting how perturbations in this pathway might influence human development and the spread of cancer. The results also may point to new molecular targets for cancer prevention therapies.

The findings, published January 1 in the journal Genes and Development, result from a cross-campus collaboration between the labs of Raymond DuBois, M.D., Ph.D., director of the Vanderbilt-Ingram Cancer Center and B.F. Byrd Jr. Professor of Molecular Oncology, and Lilianna Solnica-Krezel, Ph.D., professor of Biological Sciences.


Early in development, vertebrate embryos consist of one layer of cells. These simple embryos must go through a complex reorganization called gastrulation to establish the three primitive layers from which all adult tissues develop – the innermost layer (endoderm), which forms the gut and associated digestive organs; the middle layer (mesoderm), which develops into muscle, bone and cardiovascular organs, and the outer layer (ectoderm), which becomes the skin and nervous system.

"The body is a tube in a tube in a shell," Solnica-Krezel explained. "Before gastrulation, all of these prospective tubes are at the surface of the embryo. Gastrulation puts these different tissue precursors inside the embryo and gives them a proper shape."

But little is known about the chemical signals that cause these cells to move. Previous studies in mice and zebrafish suggested that prostaglandins were important in development. Mice lacking an enzyme that synthesizes prostaglandin had numerous developmental defects, but the true effects of prostaglandins on the embryo were likely obscured by maternal prostaglandin production.

Because they develop outside the mother and are transparent, zebrafish embryos provide a unique model in which to examine prostaglandin’s role in development.

Yong Cha, a graduate student in DuBois’ lab and first author on the study, established a collaboration with zebrafish researcher Solnica-Krezel to study this process.

The researchers inhibited the production of a specific type of prostaglandin, PGE2, in zebrafish embryos and examined their development.

In embryos treated with the inhibitor, gastrulation was arrested or slowed down significantly. The resulting embryo was also shorter than an untreated embryo.

"What is spectacular," said Solnica-Krezel, "is that…if you just put some prostaglandin back in the culture medium, you rescue the phenotype."

In another set of embryos, the researchers blocked prostaglandin receptors, EP2 and EP4. Blocking the EP4 receptor caused defects similar to those associated with blocking PGE2 synthesis. When the researchers analyzed cell movement, they found that the shapes and trajectories of embryonic cells were normal – they simply moved much slower. This suggested that signaling through the EP4 receptor regulates the speed of cell movements during gastrulation.

The sluggish cell movements could have profound implications for development.

"Timing (in development) is really important," DuBois explains. "If you are traveling and have to get to the train station at a particular time, if you are too slow, you are going to miss the train. If you don’t get on that part of the trip, that disturbs the whole agenda."

"Development synchronizes or orchestrates a myriad of events in the proper sequence (lots of trains)," said Solnica-Krezel, "and sometimes one train wreck can halt the entire process."

While ’bad timing’ during development can spell the end for an embryo, finding ways to exploit this pathway could have beneficial effects in cancer cells.

"The pathways important for regulating development are also dysregulated in cancer," said DuBois, who studies prostaglandin signaling in colon cancer. Knowing how prostaglandins regulate cell movement in development can help cancer researchers determine how cancer cells spread throughout the body, or metastasize – and how to stop the process. DuBois previously found that adding PGE2 to cultured cancer cells causes them to move much more rapidly.

"We’ve been able to show that some genes in this pathway are really important for cancer cells to spread to the liver," he said. "Eventually, we may be able to find a way to attack this pathway and prevent metastatic spread of colon cancer."

Scientists have known that people who take aspirin, a drug that inhibits prostaglandin synthesis, have about a 50 percent reduction in their risk of getting colon cancer, DuBois explained.

"We’ve been on a quest for the last 10 years to understand why such a simple drug leads to such a significant reduction in cancer risk," he said. "There are several parts to that puzzle. This (finding) may be one piece."

Zebrafish models may seem like a step back from the more traditional mouse models used to study cancer. But zebrafish, which develop quickly, are inexpensive and easy to manipulate, could actually aid in the discovery of new cancer drugs.

"If you could use the zebrafish intelligently to screen for these drugs, it might really speed up the drug discovery process and give us some early clues about the effects we may see in humans," DuBois said.

Heather Hall | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>