Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Years Eve party tip

30.12.2005


When pouring liquor, even professional bartenders unintentionally pour 20 to 30 percent more into short, squat glasses than into tall, thin ones, according to a new Cornell University study.


Jason Koski/University Photography
Cornell Professor Brian Wansink’s study showed that people overpour into short, squat glasses by 20 to 30 percent, compared with tall, thin glasses, probably because of the vertical-horizontal optical illusion that people consistently perceive vertical lines as longer than horizontal ones of the same length. Copyright © Cornell University


Wansink 2005©



"Yet, people who pour into short, wide glasses consistently believe that they pour less than those who pour into tall, narrow glasses," said Brian Wansink, the John S. Dyson Professor of Marketing, Applied Economics and of Nutritional Science at Cornell. "And education, practice, concentration and experience don’t correct the overpouring."

The reason for the difference, Wansink speculates, is the classic vertical-horizontal optical illusion: People consistently perceive equally sized vertical lines as longer than horizontal ones.


"People generally estimate tall glasses as holding more liquid than wide ones of the same volume," Wansink said. "They also focus their pouring attention on the height of the liquid they are pouring and insufficiently compensate for its width."

The study, by Wansink and Koert van Ittersum, assistant professor of marketing at Georgia Institute of Technology, is published in the newest issue of the British Medical Journal.

In separate studies, the researchers asked 198 college students (43 percent female) of legal drinking age and 86 professional bartenders (with an average six years experience -- 38 percent of them female) to pour a shot (1.5 oz.) of spirits into either short, wide tumblers or tall, thin highball glasses.

The college students consistently poured 30 percent more alcohol into the short glasses than into the tall, and the bartenders poured 20 percent more.

When the researchers asked one group of students to practice 10 times before the actual pour, they still poured 26 percent more into the short glasses. When the researchers asked one group of bartenders to "please take your time," the bartenders took twice as long to pour the drink, but still poured 10 percent more into the short glasses.

Because people generally consume most -- about 92 percent -- of what they serve themselves, the issue of pouring accuracy is relevant to policy-makers, health professionals, consumers, law enforcement officials and alcohol addiction and abuse counselors, write the authors. For example, they note, the hospitality industry wants to control serving sizes and thus costs, those in public policy want to minimize waste, and health professionals want to discourage overconsumption.

Advice from Wansink for bars and restaurants and for those who don’t want to unintentionally drink too much: "Use tall glasses or glasses with alcohol-level marks etched on them." For parents? Use tall, thin glasses when pouring soda but short, wide glasses for milk and other healthful drinks.

Wansink, the author of the new book "Marketing Nutrition: Soy, Functional Foods, Biotechnology and Obesity," is also the director of the Cornell Food and Brand Lab, made up of a group of interdisciplinary researchers who have conducted more than 200 studies on the psychology behind what people eat and how often they eat it.

Brian Wansink | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>