Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists close in on genes responsible for Parkinson’s Disease

20.12.2005


Scientists have identified 570 genes that act abnormally during the development of Parkinson’s Disease, a finding which could help doctors predict the likelihood of it developing, and provide targets for new treatments.



The research published in Neurogenetics, by the team from Imperial College London and the University of Liege, Belgium, uses microarrays to analyse brains from Parkinson’s patients. Microarrays are laboratory chips able to pick out which genes are active when different processes are occurring in the brain. When they analysed brains from people with Parkinson’s, they found that out of all 25,000 human genes, regulation of 570 was highly abnormal in Parkinson’s brains compared with non-diseased brains. This is the first study on Parkinson’s disease where all human genes were studied.

The researchers analysed 23 brains from recently deceased patients, 15 affected by Parkinson’s and 8 control brains. The majority of brains were provided by the UK Parkinson’s Disease Society Tissue Bank at Imperial College London.


Dr Linda Moran from Imperial College London and one of the authors of the paper, said: “This research shows there are a considerable number of genes associated with the development of Parkinson’s, potentially providing new clues for how to treat this disease. Now that we can identify these genes it may be possible to develop new therapies to help the increasing numbers of Parkinson’s patients.”

The team, led by Professor Manuel Graeber, analysed two parts of the brain which are affected by neurodegeneration in Parkinson’s; the substantia nigra in the mid-brain, and the cerebral cortex. They were able to eliminate around 15,000 genes from any role in Parkinson’s, as they were not found to be active in the substantia nigra, the part of the brain most affected by Parkinson’s.

Dawn Duke, MS, from Imperial College London, and one of the authors of the paper said: “In addition to identifying those genes linked with the development of Parkinson’s, this research has also shown that many of these genes were especially active in Parkinson’s brains. By limiting the activity of these genes, we may be able to control or even stop the development of Parkinson’s.”

The study was funded by the UK Parkinson’s Disease Society.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>