Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation linked to chronic pain: Study

09.12.2005


An inflamed injury may increase levels of a protein responsible for persistent pain, causing the brain to mimic pain long after source has disappeared, says U of T researchers. The findings could have serious implications for the millions of Canadians who suffer from chronic pain.



The study, published in the current issue of the Journal of Neuroscience, shows how inflammation in mice increases NR2B proteins – proteins that facilitate nerve cell communication – and imprint a painful response in brain even after the stimulus is removed. "What we’re interested in uncovering are the molecular mechanisms that can turn early pain into persistent pain," says Professor Min Zhuo of physiology, EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health and lead author of the study. "We believe that the body’s inflammatory response helps to etch the initial pain into our memory."

Normally when a mouse or a person experiences a painful event, receptors in the injury site send an electrical impulse up the spine and to the brain. The signal triggers receptors called glutamate AMPA and kainate, which flare up initially but do not directly alter the physiology of the cells. When the painful event also triggers inflammation, the nerves send extra information to the normally dormant NR2B receptors – receptors that receive messages and then produce physiological effects in the cell.


In the study, researchers injected a chemical irritant into the hind paws of mice, causing inflammation. They then tracked brain activity in the anterior cingulate cortex (ACC) – a region of the brain associated with pain and other functions such as decision-making and emotion. In tests performed one hour, six hours and one day after injection, they found that NR2B protein levels had increased over time. Previous research had already established a link between the protein and chronic pain. In an earlier study, Zhuo demonstrated that mice initially genetically enhanced with NR2B to boost memory and learning abilities also became acutely aware of minor pain for long periods of time. "Persistent pain caused by injury, learning and memory share the same common molecular mechanisms," Zhuo says. "By identifying these mechanisms we can greatly facilitate the treatment of chronic pain."

Zhuo hopes the findings will one day be used to create therapeutic solutions to conditions such as allodynia – a condition where even a gentle touch produces pain. Currently, pain-blocking drugs also target other brain activity – not just NR2B receptors – and can also block acute pain that acts as a body’s warning system.

"It’s essential that therapies don’t block the body’s entire pain system as pain often plays a valuable role," Zhuo says. "For instance, acute and immediate pain often tells us to remove ourselves from harm such as accidentally touching a hot plate. The key is to find a way to develop drugs that target only persistent pain thereby improving the patient’s quality of living."

Karen Kelly | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>