Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique multiplies life span in simple organisms

18.11.2005


USC Study suggests alternative approach to anti-aging research in humans



A counterintuitive experiment has resulted in one of the longest recorded life-span extensions in any organism and opened a new door for anti-aging research in humans.
Scientists have known for several years that an extra copy of the SIR2 gene can promote longevity in yeast, worms and fruit flies.

That finding was covered widely and incorporated into anti-aging drug development programs at several biotechnology companies.



Now, molecular geneticists at the University of Southern California suggest that SIR2 instead promotes aging.

Their study, "Sir2 Blocks Extreme Life-Span Extension," appears in the Nov. 18 edition of the biology journal Cell. The lead author is Valter Longo, assistant professor in the Leonard Davis School of Gerontology and the USC College of Letters, Arts and Sciences.

Rather than adding copies of SIR2 to yeast, Longo’s research group deleted the gene altogether.

The result was a dramatically extended life span - up to six times longer than normal - when the SIR2 deletion was combined with caloric restriction and/or a mutation in one or two genes, RAS2 and SCH9, that control the storage of nutrients and resistance to cell damage.

Human cells with reduced SIR2 activity also appear to confirm that SIR2 has a pro-aging effect, Longo said, although those results are not included in the Cell paper.

Since all mammals share key aging-related genes, the paper points to a new direction for human anti-aging research.

Longo proposes that SIR2 and possibly its counterpart in mammals, SIRT1, may block the organism from entering an extreme survival mode characterized by the absence of reproduction, improved DNA repair and increased protection against cell damage. Organisms usually enter this mode in response to starvation.

The long-lived organisms in Longo’s experiment showed extraordinary resilience under stress.

"We hit them with oxidants, we hit them with heat," Longo said. "They are highly resistant to everything. What they’re doing is basically saying, ’I cannot afford to age. I still have to generate offspring, but I don’t have enough food to do it now."

Longo predicted that as molecular geneticists master the levers of aging, they will be able to design drugs that coax the body into entering chosen aspects of a starvation-response mode, such as stress resistance, even when food is plentiful.

If enough food is available, an organism might be programmed both to reproduce normally and to maximize its survival systems.

Longo urged caution in extrapolating the result to humans.

"We have been very successful with simple organisms," he said. "Naturally, mammals are complex, and it will be a great challenge to get major life-span extension."

A "really exciting" implication, Longo said, is that cells may be able to speed up their DNA repair efforts. All organisms have the ability to repair harmful mutations in their DNA, whether caused by age, radiation, diet or other environmental factors. Cancer often begins when DNA mutations outstrip a cell’s ability to remain differentiated.

Many researchers believe DNA repair systems are already running flat out. The organisms in Longo’s experiment say otherwise.

"In our paper, we show that age-dependent mutations increase at a much slower pace in organisms lacking RAS2 or SCH9 and at a remarkably low pace in organisms lacking both SCH9 and SIR2, raising the possibility that the mutations that cause human cancers can be delayed or prevented," Longo said.

"Notably, mutations that increase the activity of human homologs of the yeast SCH9 and RAS2 genes play central roles in many human cancers." Homologs are genes descended from a common ancestral DNA sequence.

Joining with researchers at the USC Norris Comprehensive Cancer Center, Longo is studying the feasibility of reducing or preventing the age-dependent DNA mutations that cause cancer.

Longo and his collaborators began studying SIR2 in 2000, soon after a well-known set of experiments by Leonard Guarente at the Massachusetts Institute of Technology. Guarente was the first to show that over-expression of the SIR2 gene could extend life span beyond its natural limit.

However, Longo said, "We were convinced that SIR2 had the potential to be a more potent pro-aging than an anti-aging gene. And the reason was in part because of the similarity with this other gene, called HST1, which negatively regulated so-called protective genes. So we set out to test whether SIR2 could do the opposite of what everybody said it does."

The researchers do not quarrel with Guarente’s finding of a moderate increase in life span when SIR2 is over-expressed. But their work shows that much greater potential gains lie in the opposite direction.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>