Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles show potential for noninvasive cancer treatment

10.10.2005


Researchers from the University of California, San Francisco and Georgia Institute of Technology have found a new way to kill cancer cells. Building on their previous work that used gold nanoparticles to detect cancer, they now are heating the particles and using them as agents to destroy malignant cells.



The researchers are a father and son, working together on opposite coasts. Their study findings are reported in the on-line edition of the journal Cancer Letters, found at Sciencedirect.com (quicksearch: El-Sayed nanoparticles).

"In an earlier study we showed how gold nanoparticles could be bound to malignant cells, making cancer detection easier. Now we have examined how the particles’ ability to absorb light helps kill those cancer cells," said principal author Ivan El-Sayed, MD, assistant professor of otolaryngology at UCSF Medical Center.


Ivan conducted the study with his father, Mostafa El-Sayed, PhD, director of the Laser Dynamics Laboratory and chemistry professor at Georgia Tech.

Many cancer cells have a protein, known as epidermal growth factor receptor (EGFR), all over their surface, while healthy cells typically do not express the protein as strongly. By conjugating, or binding, the gold nanoparticles to an antibody for EGFR, suitably named anti-EGFR, the researchers were able to get the nanoparticles to specifically attach themselves to the cancer cells.

In the new study, the researchers incubated two oral squamous carcinoma cell lines and one benign epithelial cell line with anti-EFGR conjugated gold nanoparticles and then exposed them to continuous visible argon laser. "The malignant cells required less than half the laser energy to be killed than the benign cells," said Ivan. "In addition, we observed no photothermal destruction of any type of cell in the absence of gold nanoparticles at these low laser powers."

"We now have the potential to design an ’all in one’ active agent that can be used to noninvasively find the cancer and then kill it," Ivan said. "This holds great promise for a number of types of cancer."

"There is the real potential to design instrumentation to allow noninvasive detection and treatment of the particles in living humans," Mostafa said. "The particles can be used to create multiple designer agents targeted toward specific cancers. Much work still needs to be done, but at some point, we hope to be able to inject these compounds into patients with cancer in a search-and-destroy mission. Finding cancers not apparent to the eye will help physicians detect cancers earlier. Exposing the cells to the correct amount of light would then cause destruction of the cancer cells only and leave the healthy cells alone."

The technique isn’t toxic to human cells. "Gold nanoparticles have been used in humans for 50 years," Ivan said. "For example, in the past, a radioactive form of colloidal gold has been used to search for cancerous lymph nodes."

"Our technique is very simple and inexpensive--only a few cents worth of gold can yield results. We think it holds great promise to reduce the time, effort, and expense in cancer research, detection, and therapy in humans and under the microscope," he added.

Ivan, who sees many patients with oral cancers, hopes that in the not-too-distant future his research will pay off for his patients. "Our best chance to save lives is to catch cancer and treat it early. Our work with gold nanoparticles may result in a valuable tool in fighting not only oral cancers, but also a number of other types, including stomach, colon and skin cancers."

The research was supported by a grant from the Chemical Science, Geoscience and Biosciences Division of the U.S. Department of Energy.

UCSF is a leading university that consistently defines health care worldwide by conducting advanced biomedical research, educating graduate students in health care, and providing complex patient care.

Carol Hyman | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>