Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Offers Clues to Origins of Autoimmune Diseases

04.10.2005


Researchers at National Jewish Medical and Research Center have discovered a mechanism in the body that could lead to autoimmune diseases, such as lupus, rheumatoid arthritis, or diabetes. The research team, led by John Cambier, Ph.D., found that potentially harmful B cells circulating in the body are not permanently silenced as previously thought; they can awaken and regain the ability to launch an attack against the body’s own tissue. The findings were published online October 2 by Nature Immunology.



"Keeping self-reactive B cells in a quiescent state is crucial for the prevention of autoimmunity," said Dr. Cambier, Professor and Chairman of the Integrated Department of Immunology at National Jewish and the University of Colorado Health Sciences Center. "Our findings show how these cells can be reactivated and suggest lines of research that may lead to therapies for autoimmune diseases."

B cells are part of the immune system. When properly stimulated, they produce antibodies, which bind to foreign molecules and neutralize them or target the cells they are part of for destruction. The body, in its attempt to protect against any foreign invader, produces a huge variety of B cells, each capable of recognizing a different molecule, also called an antigen.


However, in the course of generating such a variety of B cells, the immune system also produces ones that recognize normal components of the body as antigens. Were those cells to become activated, they would initiate an attack against the body’s own tissue. Fortunately, these cells are sent into a sort of suspended animation, known as anergy, when they encounter the antigen but fail to receive additional signals necessary to activate their antibody-producing machinery.

For years, scientists have thought that one encounter with an antigen would send a B cell into permanent anergy. Dr. Cambier and his colleagues showed, however, that self-reactive B cells need constant stimulation by their antigen to remain anergic, and that removing the antigen allows them to regain their normal, ready state.

The researchers suggest that an active infection could draw a self-reactive B cell to a lymphoid organ, such as the tonsils or a lymph node, where there may be no antigen to silence it. There, a robust immune/inflammatory response to the bacterial infection could activate this dangerous B cell and cause it to trigger an autoimmune disease.

"There have been reports linking the onset of autoimmunity with a preceding bacterial infection," said Stephen Gauld, Ph.D., lead author and post-doctoral fellow in Dr. Cambier’s lab. "We are now conducting experiments to determine the role of pro-inflammatory or bacterial products in the loss of B-cell anergy. We are also seeking to better understand the intracellular events that lead to anergy and its loss. Either of these lines of research could uncover potential targets for autoimmune therapy."

William Allstetter | EurekAlert!
Further information:
http://www.njc.org

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>