Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pinpoint molecular basis for phantom pain

21.09.2005


Yale researchers report the first evidence that phantom pain following spinal cord injury is the result of hypersensitive neurons in the thalamic region of the brain that can be suppressed with specially designed molecular agents.



"A majority of people with spinal cord injury and limb amputations experience phantom sensations of excruciating pain at or below the level of their paralysis or loss," said Bryan Hains, associate research scientist and co-author of the study.

Typically, the perception of pain travels through three orders of neurons. The first order neurons carry signals from the periphery to the spinal cord, the second order neurons relay this information from the spinal cord to the thalamus and the third order neurons transmit the information from the thalamus to the primary sensory cortex where the information is processed, resulting in the "feeling" of pain.


The study reports that in rats with spinal cord injury, third order neurons within the thalamus spontaneously and abnormally fire signals in the absence of any incoming signals from the first order neurons. It also reports that these rogue neurons contain abnormally high levels of a particular type of sodium channel, called Nav1.3. Sodium channels serve as batteries during the conduction of nerve signals.

"Abnormal presence of Nav1.3 in these neurons has been linked to changes in their physiological temperament. They are hypersensitive and spontaneously fire signals at higher-than-normal rates, even in the absence of a painful stimulus," Hains said.

The researchers designed targeted molecular agents against Nav1.3 and injected them into the spinal fluid of the injured rats. This produced a significant reduction in the presence of Nav1.3 in second and third order neurons accompanied by a reduction in signals that they produced.

"This study is the first to show that thalamic neurons contain abnormally high levels of Nav1.3 after injury to the spinal cord and that suppressing the activity of Nav1.3 in these neurons can mitigate pain," said senior author Stephen Waxman, M.D., professor and chair of neurology and director of the Veterans Administration Rehabilitation Research and Development Center in West Haven. "Although these studies must be validated in higher-order animals before testing in humans, this represents an important step forward in the understanding and treatment of phantom pain."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>