Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skull study sheds light on dinosaur diversity

16.09.2005


With their long necks and tails, sauropod dinosaurs—famous as the Sinclair gasoline logo and Fred Flintstone’s gravel pit tractor—are easy to recognize, in part because they all seem to look alike.



The largest animals known to have walked the earth, sauropods were common in North America during the middle of the dinosaur era but were thought to have been pushed to extinction by more specialized plant-eaters at the end of that era. New discoveries, however, are showing that one lineage of sauropods diversified at the end of the dinosaur era, University of Michigan paleontologist Jeffrey Wilson says.

Wilson’s recent restudy and reconstruction of the skull of a Mongolian sauropod adds to a growing body of evidence for sauropod diversity at the end of the dinosaur era. Wilson described the reconstruction and the conclusions he drew from it in a paper published Aug. 24 in the Journal of Systematic Palaeontology.


He based the reconstruction on two nearly complete skulls that were found in the Gobi Desert in the 1950s and 1960s but whose evolutionary relationships have remained enigmatic. In the 1990s and early 2000s, Wilson restudied the skulls and found characteristics identifying them as skulls of titanosaurs, a late surviving sauropod lineage.

"Titanosaurs, which were surprisingly common at the end of the dinosaur era, were really the only sauropod lineage that flourished. All the others went extinct," said Wilson, an assistant professor of geological sciences and an assistant curator at the University of Michigan Museum of Paleontology. But as prevalent as titanosaurs were, they left behind surprisingly few skulls. Paleontologists have found plenty of other titanosaur bones, providing a picture of a group of sauropods with specialized limb bones.

Wilson began to appreciate the finer points of titanosaurs as a graduate student, when he and another student studied fossilized sauropod tracks and titanosaur limb anatomy. From those studies, Wilson concluded that unlike other sauropods, titanosaurs walked with their feet planted far from the middles of their bodies, an unusual style of "wide gauge" locomotion.

"Most animals walk with a narrow gauge, with their feet close to the midline, because it’s energetically more efficient to walk that way. But some sauropod trackways tell us that a group of sauropods were walking with a new wide-gauge stance. We can identify characteristics of titanosaurs that would have allowed that stance, and we can tie the appearance of those features with the proliferation of wide gauge tracks everywhere in the fossil record at the end of the dinosaur era." Wilson wonders if the change in locomotion—from typical sauropod narrow-gauge walking to titanosaur wide-gauge walking—corresponded to lifestyle changes, such as different feeding habits. But without skulls to study, it has been hard to draw conclusions about how and what titanosaurs ate.

With his work and that of researchers at the State University of New York, Stony Brook who announced the discovery of a complete titanosaur skeleton in 2001, sauropod specialists finally can start piecing together a clearer picture of the dinosaurs’ lives.

One feature of the skulls is particularly intriguing. "They have elongate, sort of horse-like skulls with many openings and grooves on the outer surface of their snouts," said Wilson, who worked closely with U-M Museum of Paleontology artist Bonnie Miljour over the course of a year preparing the paper’s many illustrations of the skull reconstruction. "Blood vessels and nerves passed through these holes and may suggest an especially sensitive snout. This probably had some role in feeding, but we haven’t investigated it at all."

Oddly, a group of distantly related sauropods evolved a similarly grooved snout. "Apparently, these two different branches of sauropods gravitated toward similar anatomical structures, perhaps because they were specialized for eating certain types of vegetation."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/news/index.html?Releases/2005/Sep05/r091505

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>