Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eating and body weight regulated by specific neurons

14.09.2005


Researchers at Yale School of Medicine provide direct evidence that two parts of a neuronal system, one that promotes eating and another that suppresses eating, are critical for the acute regulation of eating and body weight, according to a study published online in the September 11 issue of Nature Neuroscience.



The paper makes it clear that the agouti-related peptide-expressing (AgRP) neurons are mandatory for eating. "Previous studies showed that the brain, particularly the hypothalamus, is responsible for the regulation of eating," said co-senior author Tamas Horvath, chair and associate professor in the Section of Comparative Medicine, and associate professor in neurobiology and the Department of Obstetrics, Gynecology & Reproductive Sciences. "But until now, no experimental evidence was available to prove that AgRP neurons are critical for acute regulation of eating."

Horvath’s collaborator Jens Bruening of the University of Cologne in Germany introduced the avian diphtheria toxin receptor into neurons in the feeding support system of transgenic mice. When the animals were adults, two injections of toxin caused the specific cell population to die within 48 hours, impairing the mouse’s ability to eat and resulting in acute anorexia. These mice also showed marked reduction in blood glucose, plasma insulin and Leptin concentrations.


"Our results confirm the hypothesis that these two systems are critical for eating and the cessation of eating," said Horvath. "Previous transgenic approaches failed to provide this proof because of compensatory mechanisms that could operate during development. None of those actually knocked out neuronal function. In this case, however, neurons are gone and there is no time to replace their function."

In explaining the significance of the finding, Horvath said, "It is important to ensure that the multibillion dollar academic and pharmaceutical approach against metabolic disorders is leaning in the right direction. The approach in general could also eventually lead to specific destruction of cells in other kinds of diseases."

Other authors on the study included Eva Gropp, Marya Shanabrough, Erzsebet Borak, Allison W. Xu, Ruth Janoschek, Thorsten Buch, Leona Plum, Nina Balthasar, Brigitte Hampel, Ari Waisman, Gregory S. Barsh, and co-senior author Jens Bruning.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>