Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After overeating, we don’t compensate by eating less

16.08.2005


If you binged for two weeks while on vacation and gained 5 pounds, would you be biologically primed to eat less to compensate and shake off the excess weight? No, suggests a new Cornell University study.

When a group of 12 normal-weight men and women, average age 31, agreed to overeat by 35 percent for two weeks, they gained an average of 5 pounds, half of it body fat. When they were permitted to return to their normal eating behavior, they did not spontaneously cut back on their normal food intake, even after the two weeks of "feeling stuffed." Rather, they ate just as much as they did before the overeating period, as measured by the researchers during the two weeks before their binge began.

"The study suggests that eating behavior does not normally respond to internal cues, such as physiological mechanisms involved in the regulation of body weight, but to external cues," said David Levitsky, professor of nutritional sciences and of psychology at Cornell. "In other words, when the subjects returned to the same environment -- in this case our eating lab -- they returned to their same eating patterns, regardless of any biological signals."



The results add to the growing evidence that environmental cues, especially portion size, appear to be a major determinant of how much we eat, he said. This finding runs counter to the current view that food intake is largely determined by biological mechanisms.

The study is published in Physiology and Behavior (Vol. 84 (5), pp. 669-675) and was co-authored by Eva Obarzanek, a nutritionist for the National Heart, Lung and Blood Institute of the National Institutes of Health, Gordana Mrdjenovic, Cornell Ph.D. ’00, and Barbara Strupp, associate professor of nutritional sciences at Cornell.

Despite not eating less or exercising more after gaining weight, the participants still lost about half of their weight gain in the three weeks after the overeating phase because their metabolic rate spontaneously increased. "You burn more energy simply by carrying around additional weight," Levitsky said. "The spontaneous increase in metabolic rate that we found in the subjects after overeating was remarkably consistent with a comparable overfeeding study in animals, as well as with other studies with humans and overeating."

He plans to conduct a study in the fall to examine how much additional energy is expended when carrying around extra weight. It is well known, he said, that obese people have higher energy expenditures than nonobese people, and his study is an example of weight being regulated passively without any control of food intake.

Levitsky has been exploring predictors of food intake for several years. A number of his previous studies found that the amount animals and people eat is strongly determined by portion size, and that eating between meals, or eating a very large or very small (or no) previous meal does not influence how much is eaten at the next meal.

"Consistently, we find that how much people eat is in direct relation to how much they are served, the variety of foods offered and the number of people with whom they eat," Levitsky said.

Nicola Pytell | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>