Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance in prostate cancer management

10.08.2005


Scientists from The Institute of Cancer Research have developed a technique which will markedly help in predicting the behaviour of prostate cancer.



At present, prostate cancer tests – needle biopsies, blood and urine samples - are unable to accurately predict how aggressive the cancer is and whether it is likely to progress, resulting in thousands of men undergoing radical preventative surgery which may be unnecessary.

A study - published online today in the British Journal of Cancer* - describes a simple and highly reliable technique, known as the ’Checkerboard Tissue Microarray (TMA) Method’ which can be carried out on prostate cancer needle biopsies. The Checkerboard TMA Method looks for multiple markers of various genes associated with prostate cancer, including the E2F3 gene. Overexpression of the E2F3 gene, first identified at The Institute of Cancer Research, is a marker of how aggressive the prostate cancer will be.


The new technique will allow the investigation of an enormous untapped resource of clinical specimens obtained at the time of diagnosis of cancer, in order to identify markers of the cancer’s aggressiveness. The technique will be pivotal in developing a test for prostate cancer aggressiveness which may ultimately prevent thousands of men undergoing unnecessary surgery, with its often associated severe side effects including incontinence and impotence.

"This represents a real advance for the future management of prostate cancer," said Professor Colin Cooper, The Grand Charity of Freemasons’ Chair of Molecular Biology at The Institute of Cancer Research. "Eventually we hope to be able to distinguish the tigers - aggressive tumours requiring treatment - from the pussycats - non aggressive tumours which can be monitored for many years without treatment. Ultimately this could prevent thousands of men from having to undergo radical surgery, which can have devastating effects on their day to day lives."

Prostate cancer is now the most common cancer to affect men in the UK. More than 30,000 men in the UK are diagnosed with the disease and almost 10,000 men die from the disease each year.

Professor Peter Rigby, Chief Executive at The Institute of Cancer Research comments:

"This demonstrates the real progress we are making in the field of prostate cancer research. Since discovering the E2F3 gene as a marker of prostate cancer aggressiveness our research team has been committed to developing a test for the gene. The development of this technique is a significant step forward in prostate cancer management and should ultimately improve thousands of men’s lives."

Nadia Ramsey | EurekAlert!
Further information:
http://www.icr.ac.uk

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>