Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance in prostate cancer management

10.08.2005


Scientists from The Institute of Cancer Research have developed a technique which will markedly help in predicting the behaviour of prostate cancer.



At present, prostate cancer tests – needle biopsies, blood and urine samples - are unable to accurately predict how aggressive the cancer is and whether it is likely to progress, resulting in thousands of men undergoing radical preventative surgery which may be unnecessary.

A study - published online today in the British Journal of Cancer* - describes a simple and highly reliable technique, known as the ’Checkerboard Tissue Microarray (TMA) Method’ which can be carried out on prostate cancer needle biopsies. The Checkerboard TMA Method looks for multiple markers of various genes associated with prostate cancer, including the E2F3 gene. Overexpression of the E2F3 gene, first identified at The Institute of Cancer Research, is a marker of how aggressive the prostate cancer will be.


The new technique will allow the investigation of an enormous untapped resource of clinical specimens obtained at the time of diagnosis of cancer, in order to identify markers of the cancer’s aggressiveness. The technique will be pivotal in developing a test for prostate cancer aggressiveness which may ultimately prevent thousands of men undergoing unnecessary surgery, with its often associated severe side effects including incontinence and impotence.

"This represents a real advance for the future management of prostate cancer," said Professor Colin Cooper, The Grand Charity of Freemasons’ Chair of Molecular Biology at The Institute of Cancer Research. "Eventually we hope to be able to distinguish the tigers - aggressive tumours requiring treatment - from the pussycats - non aggressive tumours which can be monitored for many years without treatment. Ultimately this could prevent thousands of men from having to undergo radical surgery, which can have devastating effects on their day to day lives."

Prostate cancer is now the most common cancer to affect men in the UK. More than 30,000 men in the UK are diagnosed with the disease and almost 10,000 men die from the disease each year.

Professor Peter Rigby, Chief Executive at The Institute of Cancer Research comments:

"This demonstrates the real progress we are making in the field of prostate cancer research. Since discovering the E2F3 gene as a marker of prostate cancer aggressiveness our research team has been committed to developing a test for the gene. The development of this technique is a significant step forward in prostate cancer management and should ultimately improve thousands of men’s lives."

Nadia Ramsey | EurekAlert!
Further information:
http://www.icr.ac.uk

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>