Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest study of unrelated bone marrow transplantation for leukemia serves as benchmark

03.08.2005


Multi-institutional study addresses critical GVHD complication



Together with 16 other institutions in the United States, University of Minnesota researchers led the largest study to date in patients with leukemia and related disorders undergoing bone marrow transplantation from unrelated donors. The study was designed to determine whether one of two general approaches to prevent graft-versus-host-disease (GVHD), a potentially lethal complication, might result in improved survival.

While the trial demonstrated similar survival rates, the study was the most comprehensive to date, evaluating various clinical outcomes, resource utilization, costs, and health quality of life. The study, published in the Aug. 3, 2005 online issue of The Lancet, will likely serve as the benchmark for all future studies in this patient population.


Graft-versus-host-disease is a common complication after bone marrow transplantation in which the immune cells from the donated marrow attack the body of the patient who received the transplant. Severity ranges from mild to life threatening, and the disease and its treatment can have a profound effect on quality of life.

The two primary strategies for preventing GVHD, the removal of T-cells (the cell that causes GVHD) and immunosuppressive drug therapy (suppression of T-cell function), were studied in this trial. While the primary aim of the study was to demonstrate whether one approach might be better than the other in terms of disease-free survival three years after transplantation, the study also systematically compared the incidence of various complications (GVHD, graft failure, therapy-related side effects, disease recurrence) as well as utilization of blood products, nutritional supplementation, number of admissions to the hospital and intensive care unit, hospital costs, and health quality of life.

"While the T-cell depletion approach was very effective in reducing the risk of GVHD, a higher risk of viral infection in general and higher risk of disease recurrence specifically in patients with chronic myelogenous leukemia, eliminated the potential benefit of reduced GVHD," ," said John E. Wagner, M.D., professor of pediatrics and scientific director of clinical research, Blood and Marrow Transplantation Program and Stem Cell Institute, and lead author of the study. "Overall, we observed no differences in survival at three years and no appreciable differences in cost or quality of life."

These results counter what investigators might have guessed and reflect the critical importance of performing large randomized trials. "Prior to this study, colleagues promoting T-cell depletion, like myself, predicted that T-cell depletion would have offered a better chance of survival," Wagner said. "What is abundantly clear is that T-cell depletion and GVHD prevention is only one step in figuring out how to improve upon the chance of cure in unrelated marrow transplant patients. The next hurdle is to find ways to fix the crippled immune system."

Despite the lack of evidence that one approach was better than the other, "the results clearly point out the limitations of bone marrow transplants," Wagner said. However, he added that the methodological approaches used and study results will be valuable benchmarks for future studies of novel treatments for leukemias and other blood-related cancers.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>