Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop nanotech-laser treatment that kills cancer cells without harming healthy tissue

02.08.2005


Scientists at Stanford University have developed a new laser therapy that destroys cancer cells but leaves healthy ones unharmed. The new, non-invasive treatment is described in a study published in the Aug. 1 online edition of the Proceedings of the National Academy of Sciences (PNAS).



"One of the longstanding problems in medicine is how to cure cancer without harming normal body tissue," says Hongjie Dai, an associate professor of chemistry at Stanford and co-author of the study. "Standard chemotherapy destroys cancer cells and normal cells alike. That’s why patients often lose their hair and suffer numerous other side effects. For us, the Holy Grail would be finding a way to selectively kill cancer cells and not damage healthy ones."

Nanotechnology


For the PNAS experiment, Dai and his colleagues used a basic tool of nanotechnology--carbon nanotubes, synthetic rods that are only half the width of a DNA molecule. Thousands of nanotubes could easily fit inside a typical cell.

"An interesting property of carbon nanotubes is that they absorb near-infrared light waves, which are slightly longer than visible rays of light and pass harmlessly through our cells," Dai says. But shine a beam of near-infrared light on a carbon nanotube, and the results are dramatic. Electrons in the nanotube become excited and begin releasing excess energy in the form of heat.

In the experiment, Stanford researchers found that if they placed a solution of carbon nanotubes under a near-infrared laser beam, the solution would heat up to about 158 degrees F (70 C) in two minutes. When nanotubes were placed inside cells and radiated by the laser beam, the cells were quickly destroyed by the heat. However, cells without nanotubes showed no effects when placed under near-infrared light.

"It’s actually quite simple and amazing," Dai observes. "We’re using an intrinsic property of nanotubes to develop a weapon that kills cancer."

Trojan horse

To assure that only diseased cells were destroyed in the experiment, the scientists had to find a way to selectively deliver carbon nanotubes into cancer cells and not into healthy ones. Dai and his co-workers achieved this by performing a bit of biochemical trickery. Unlike normal cells, the surface of a cancer cell contains numerous receptors for a vitamin known as folate. The researchers decided to coat the nanotubes with folate molecules, which would only be attracted to diseased cells with folate receptors.

The experiment worked as predicted. Most of the folate-coated nanotubes ended up inside cancer cells, bypassing the normal cells--like Trojan horses crossing the enemy line. Once the nanotubes were planted inside, the researchers shined the near-infrared laser on the cancer cells, which soon heated up and died.

"Folate is just an experimental model that we used," Dai says. "In reality, there are more interesting ways we can do this. For example, we can attach an antibody to a carbon nanotube to target a particular kind of cancer cell."

One example is lymphoma, or cancer of the lymphatic system. Like many cancers, lymphoma cells have well-defined surface receptors that recognize unique antibodies. When attached to a carbon nanotube, the antibody would play the role of a Trojan horse. Dai and Dean Felsher, a lymphoma researcher in the Stanford School of Medicine, have begun a collaboration using laboratory mice with lymphoma. The researchers want to determine if shining near-infrared light on the animal’s skin will destroy lymphatic tumors, while leaving normal cells intact.

"It’s a really interesting idea," says Felsher, an assistant professor of medicine and of pathology. "For a long time people have thought about ways to target cancer cells, and this is a very promising technique."

Researchers at Rice University recently conducted a similar experiment on mice with cancerous tumors. Instead of carbon nanotubes, the Rice team injected the tumors with gold-coated nanoshells and exposed the animals to near-infrared light for several minutes. The tumors disappeared within 10 days without damaging any healthy tissue.

Future applications

Dai points out that the carbon nanotubes also can be delivered to diseased cells by direct injection. "In breast cancer, for example, there might come a time when we inject nanotubes into the tumor and expose the breast to near-infrared light," he says. This benign therapy could potentially eliminate months of debilitating chemotherapy and radiation treatment, he adds.

"The laser we used is a 3-centimeter beam that’s held like a flashlight," he notes. "We can take the beam and put anywhere we want. We can shine it on a local area of the skin or inside an internal organ using a fiber-optic device."

Dai has applied for a patent on the procedure through Stanford’s Office of Technology Licensing (OTL). He also has patented another technique that uses pulses of near-infrared light to shake the DNA molecule loose from the carbon nanotube after they’ve entered the cell. The idea is to use the nanotube to deliver therapeutic molecules of DNA, RNA or protein directly into the cell nucleus to fight various infections and diseases.

"Nanotechnology has long been known for its applications in electronics," Dai concludes. "But this experiment is a wonderful example of nanobiotechnology--using the unique properties of nanomaterials to advance biology and medicine."

Dai’s graduate student, Nadine Wong Shi Kam, is lead author of the PNAS study. Other co-authors are Michael O’Connell, a former postdoctoral fellow in the Department of Chemistry, and graduate student Jeffrey A. Wisdom in the Department of Applied Physics.

The study was partly supported by the National Science Foundation Center on Polymer Interfaces and Macromolecular Assemblies, a research partnership among Stanford, IBM Almaden Research Center, University of California-Davis and University of California-Berkeley.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>